Layer 6: Orchestration
Overview
Section titled “Overview”The Orchestration Layer (L6) enables coordination of multiple agents working together as teams, managing complex workflows, and achieving goals collaboratively. This layer is required for ARAL-ORCH profile.
users Team Management
Form and manage agent teams
diagram-project Workflow Engine
Execute complex multi-step workflows
scale-balanced Load Balancing
Distribute work across agents
handshake Consensus
Aggregate decisions from multiple agents
Team Architecture
Section titled “Team Architecture”Team Definition
Section titled “Team Definition”interface Team { id: string name: string members: TeamMember[] coordinator: string // Agent ID of coordinator workflowStrategy: WorkflowStrategy consensusThreshold: number}
interface TeamMember { agentId: string role: string capabilities: string[] weight: number // For consensus voting}
const developmentTeam: Team = { id: 'dev-team-001', name: 'Software Development Team', members: [ { agentId: 'architect-001', role: 'System Architect', capabilities: ['design', 'architecture', 'review'], weight: 1.5 }, { agentId: 'developer-001', role: 'Senior Developer', capabilities: ['coding', 'testing', 'refactoring'], weight: 1.0 }, { agentId: 'tester-001', role: 'QA Engineer', capabilities: ['testing', 'validation', 'reporting'], weight: 1.0 } ], coordinator: 'architect-001', workflowStrategy: 'sequential', consensusThreshold: 0.67}Orchestrator
Section titled “Orchestrator”class TeamOrchestrator { async executeTask( task: Task, team: Team ): Promise<TaskResult> { // 1. Analyze task and assign to appropriate agent(s) const assignments = await this.assignTask(task, team)
// 2. Execute based on workflow strategy let results: AgentResult[]
switch (team.workflowStrategy) { case 'sequential': results = await this.executeSequential(assignments) break
case 'parallel': results = await this.executeParallel(assignments) break
case 'consensus': results = await this.executeConsensus(assignments) break }
// 3. Aggregate results const finalResult = await this.aggregateResults( results, team.consensusThreshold )
return finalResult }
private async executeSequential( assignments: Assignment[] ): Promise<AgentResult[]> { const results: AgentResult[] = []
for (const assignment of assignments) { const agent = await this.getAgent(assignment.agentId) const result = await agent.execute(assignment.task)
results.push(result)
// Pass result to next agent as context if (assignment.next) { assignment.next.context = result } }
return results }
private async executeParallel( assignments: Assignment[] ): Promise<AgentResult[]> { const promises = assignments.map(async assignment => { const agent = await this.getAgent(assignment.agentId) return agent.execute(assignment.task) })
return Promise.all(promises) }
private async executeConsensus( assignments: Assignment[] ): Promise<AgentResult[]> { // All agents work on same task const results = await this.executeParallel(assignments)
// Find consensus const consensus = await this.findConsensus(results)
return [consensus] }}class TeamOrchestrator: async def execute_task( self, task: Task, team: Team ) -> TaskResult: # 1. Analyze and assign assignments = await self.assign_task(task, team)
# 2. Execute based on strategy if team.workflow_strategy == 'sequential': results = await self.execute_sequential(assignments) elif team.workflow_strategy == 'parallel': results = await self.execute_parallel(assignments) elif team.workflow_strategy == 'consensus': results = await self.execute_consensus(assignments)
# 3. Aggregate results final_result = await self.aggregate_results( results, team.consensus_threshold )
return final_result
async def execute_sequential( self, assignments: List[Assignment] ) -> List[AgentResult]: results = []
for assignment in assignments: agent = await self.get_agent(assignment.agent_id) result = await agent.execute(assignment.task)
results.append(result)
# Pass result to next agent if assignment.next: assignment.next.context = result
return resultsWorkflow Strategies
Section titled “Workflow Strategies”Sequential Workflow
Agents execute one after another, passing results forward.
// Example: Code Review Pipelineconst codeReviewWorkflow: Workflow = { steps: [ { agent: 'architect', action: 'review-design', output: 'designFeedback' }, { agent: 'developer', action: 'implement-changes', input: 'designFeedback', output: 'implementation' }, { agent: 'tester', action: 'run-tests', input: 'implementation', output: 'testResults' } ]}Parallel Workflow
Multiple agents work simultaneously on different parts.
// Example: Parallel Analysisconst analysisWorkflow: Workflow = { steps: [ { agent: 'security-agent', action: 'security-scan', parallel: true }, { agent: 'performance-agent', action: 'performance-test', parallel: true }, { agent: 'quality-agent', action: 'code-quality-check', parallel: true } ], aggregation: 'combine-reports'}Consensus Workflow
Multiple agents vote or agree on decisions.
// Example: Decision Makingconst decisionWorkflow: Workflow = { mode: 'consensus', agents: ['expert-1', 'expert-2', 'expert-3'], task: 'evaluate-proposal', consensusThreshold: 0.67, tieBreaker: 'expert-1'}Hierarchical Workflow
Supervisor agent manages worker agents.
// Example: Project Managementconst projectWorkflow: Workflow = { mode: 'hierarchical', supervisor: 'project-manager', workers: [ { agent: 'developer-1', capacity: 10 }, { agent: 'developer-2', capacity: 8 }, { agent: 'designer', capacity: 5 } ], allocation: 'by-capacity'}Consensus Mechanisms
Section titled “Consensus Mechanisms”class ConsensusEngine { async findConsensus( results: AgentResult[], threshold: number ): Promise<AgentResult> { // Weight votes by agent expertise const weightedVotes = results.map(r => ({ result: r, weight: this.getAgentWeight(r.agentId) }))
// Find majority agreement const grouped = this.groupByOutcome(weightedVotes) const totalWeight = weightedVotes.reduce((sum, v) => sum + v.weight, 0)
for (const [outcome, votes] of grouped) { const voteWeight = votes.reduce((sum, v) => sum + v.weight, 0) const agreement = voteWeight / totalWeight
if (agreement >= threshold) { return { outcome, consensus: true, agreement, votes: votes.length, dissent: results.length - votes.length } } }
// No consensus reached return { outcome: 'no-consensus', consensus: false, agreement: 0, suggestions: this.getDissenting Opinions(results) } }}Load Balancing
Section titled “Load Balancing”class LoadBalancer { async distributeWork( tasks: Task[], agents: Agent[] ): Promise<Map<string, Task[]>> { const assignments = new Map<string, Task[]>()
// Get current load for each agent const agentLoads = await Promise.all( agents.map(async a => ({ agent: a, load: await a.getCurrentLoad(), capacity: a.getCapacity() })) )
// Sort agents by available capacity agentLoads.sort((a, b) => (a.capacity - a.load) - (b.capacity - b.load) )
// Distribute tasks for (const task of tasks) { // Find agent with most available capacity const bestAgent = agentLoads.find(a => a.load + task.estimatedLoad <= a.capacity )
if (bestAgent) { if (!assignments.has(bestAgent.agent.id)) { assignments.set(bestAgent.agent.id, []) } assignments.get(bestAgent.agent.id)!.push(task) bestAgent.load += task.estimatedLoad } else { // Queue for later or scale up await this.queueOrScale(task) } }
return assignments }}Configuration Example
Section titled “Configuration Example”{ "layers": { "orchestration": { "teams": [ { "id": "dev-team", "name": "Development Team", "members": [ { "agentId": "architect", "role": "lead", "weight": 1.5 }, { "agentId": "developer", "role": "implementer", "weight": 1.0 } ], "workflow": { "strategy": "sequential", "steps": [ { "agent": "architect", "action": "design" }, { "agent": "developer", "action": "implement" } ] } } ], "loadBalancing": { "enabled": true, "strategy": "least-loaded", "healthCheck": { "interval": 10000, "timeout": 5000 } }, "consensus": { "defaultThreshold": 0.67, "tieBreaker": "coordinator" } } }}Best Practices
Section titled “Best Practices”Team Design
✅ DO:
- Define clear roles and responsibilities
- Balance team composition
- Set appropriate consensus thresholds
- Plan for conflicts
❌ DON’T:
- Create teams without clear purpose
- Overload coordinators
- Ignore agent capacity
Workflow Design
✅ DO:
- Choose appropriate strategy for task
- Handle failures gracefully
- Implement timeout mechanisms
- Monitor workflow progress
❌ DON’T:
- Create overly complex workflows
- Skip error handling
- Ignore performance bottlenecks