Skip to content

Layer 6: Orchestration

The Orchestration Layer (L6) enables coordination of multiple agents working together as teams, managing complex workflows, and achieving goals collaboratively. This layer is required for ARAL-ORCH profile.

Agent Team

Orchestration Layer

Orchestrator

Team Manager

Workflow Engine

Load Balancer

Consensus Mechanism

Agent 1

Designer

Agent 2

Developer

Agent 3

Tester

interface Team {
id: string
name: string
members: TeamMember[]
coordinator: string // Agent ID of coordinator
workflowStrategy: WorkflowStrategy
consensusThreshold: number
}
interface TeamMember {
agentId: string
role: string
capabilities: string[]
weight: number // For consensus voting
}
const developmentTeam: Team = {
id: 'dev-team-001',
name: 'Software Development Team',
members: [
{
agentId: 'architect-001',
role: 'System Architect',
capabilities: ['design', 'architecture', 'review'],
weight: 1.5
},
{
agentId: 'developer-001',
role: 'Senior Developer',
capabilities: ['coding', 'testing', 'refactoring'],
weight: 1.0
},
{
agentId: 'tester-001',
role: 'QA Engineer',
capabilities: ['testing', 'validation', 'reporting'],
weight: 1.0
}
],
coordinator: 'architect-001',
workflowStrategy: 'sequential',
consensusThreshold: 0.67
}
class TeamOrchestrator {
async executeTask(
task: Task,
team: Team
): Promise<TaskResult> {
// 1. Analyze task and assign to appropriate agent(s)
const assignments = await this.assignTask(task, team)
// 2. Execute based on workflow strategy
let results: AgentResult[]
switch (team.workflowStrategy) {
case 'sequential':
results = await this.executeSequential(assignments)
break
case 'parallel':
results = await this.executeParallel(assignments)
break
case 'consensus':
results = await this.executeConsensus(assignments)
break
}
// 3. Aggregate results
const finalResult = await this.aggregateResults(
results,
team.consensusThreshold
)
return finalResult
}
private async executeSequential(
assignments: Assignment[]
): Promise<AgentResult[]> {
const results: AgentResult[] = []
for (const assignment of assignments) {
const agent = await this.getAgent(assignment.agentId)
const result = await agent.execute(assignment.task)
results.push(result)
// Pass result to next agent as context
if (assignment.next) {
assignment.next.context = result
}
}
return results
}
private async executeParallel(
assignments: Assignment[]
): Promise<AgentResult[]> {
const promises = assignments.map(async assignment => {
const agent = await this.getAgent(assignment.agentId)
return agent.execute(assignment.task)
})
return Promise.all(promises)
}
private async executeConsensus(
assignments: Assignment[]
): Promise<AgentResult[]> {
// All agents work on same task
const results = await this.executeParallel(assignments)
// Find consensus
const consensus = await this.findConsensus(results)
return [consensus]
}
}
class TeamOrchestrator:
async def execute_task(
self,
task: Task,
team: Team
) -> TaskResult:
# 1. Analyze and assign
assignments = await self.assign_task(task, team)
# 2. Execute based on strategy
if team.workflow_strategy == 'sequential':
results = await self.execute_sequential(assignments)
elif team.workflow_strategy == 'parallel':
results = await self.execute_parallel(assignments)
elif team.workflow_strategy == 'consensus':
results = await self.execute_consensus(assignments)
# 3. Aggregate results
final_result = await self.aggregate_results(
results,
team.consensus_threshold
)
return final_result
async def execute_sequential(
self,
assignments: List[Assignment]
) -> List[AgentResult]:
results = []
for assignment in assignments:
agent = await self.get_agent(assignment.agent_id)
result = await agent.execute(assignment.task)
results.append(result)
# Pass result to next agent
if assignment.next:
assignment.next.context = result
return results
arrow-right Sequential Workflow

Agents execute one after another, passing results forward.

// Example: Code Review Pipeline
const codeReviewWorkflow: Workflow = {
steps: [
{
agent: 'architect',
action: 'review-design',
output: 'designFeedback'
},
{
agent: 'developer',
action: 'implement-changes',
input: 'designFeedback',
output: 'implementation'
},
{
agent: 'tester',
action: 'run-tests',
input: 'implementation',
output: 'testResults'
}
]
}
code-fork Parallel Workflow

Multiple agents work simultaneously on different parts.

// Example: Parallel Analysis
const analysisWorkflow: Workflow = {
steps: [
{
agent: 'security-agent',
action: 'security-scan',
parallel: true
},
{
agent: 'performance-agent',
action: 'performance-test',
parallel: true
},
{
agent: 'quality-agent',
action: 'code-quality-check',
parallel: true
}
],
aggregation: 'combine-reports'
}
users Consensus Workflow

Multiple agents vote or agree on decisions.

// Example: Decision Making
const decisionWorkflow: Workflow = {
mode: 'consensus',
agents: ['expert-1', 'expert-2', 'expert-3'],
task: 'evaluate-proposal',
consensusThreshold: 0.67,
tieBreaker: 'expert-1'
}
sitemap Hierarchical Workflow

Supervisor agent manages worker agents.

// Example: Project Management
const projectWorkflow: Workflow = {
mode: 'hierarchical',
supervisor: 'project-manager',
workers: [
{ agent: 'developer-1', capacity: 10 },
{ agent: 'developer-2', capacity: 8 },
{ agent: 'designer', capacity: 5 }
],
allocation: 'by-capacity'
}
class ConsensusEngine {
async findConsensus(
results: AgentResult[],
threshold: number
): Promise<AgentResult> {
// Weight votes by agent expertise
const weightedVotes = results.map(r => ({
result: r,
weight: this.getAgentWeight(r.agentId)
}))
// Find majority agreement
const grouped = this.groupByOutcome(weightedVotes)
const totalWeight = weightedVotes.reduce((sum, v) => sum + v.weight, 0)
for (const [outcome, votes] of grouped) {
const voteWeight = votes.reduce((sum, v) => sum + v.weight, 0)
const agreement = voteWeight / totalWeight
if (agreement >= threshold) {
return {
outcome,
consensus: true,
agreement,
votes: votes.length,
dissent: results.length - votes.length
}
}
}
// No consensus reached
return {
outcome: 'no-consensus',
consensus: false,
agreement: 0,
suggestions: this.getDissenting Opinions(results)
}
}
}
class LoadBalancer {
async distributeWork(
tasks: Task[],
agents: Agent[]
): Promise<Map<string, Task[]>> {
const assignments = new Map<string, Task[]>()
// Get current load for each agent
const agentLoads = await Promise.all(
agents.map(async a => ({
agent: a,
load: await a.getCurrentLoad(),
capacity: a.getCapacity()
}))
)
// Sort agents by available capacity
agentLoads.sort((a, b) =>
(a.capacity - a.load) - (b.capacity - b.load)
)
// Distribute tasks
for (const task of tasks) {
// Find agent with most available capacity
const bestAgent = agentLoads.find(a =>
a.load + task.estimatedLoad <= a.capacity
)
if (bestAgent) {
if (!assignments.has(bestAgent.agent.id)) {
assignments.set(bestAgent.agent.id, [])
}
assignments.get(bestAgent.agent.id)!.push(task)
bestAgent.load += task.estimatedLoad
} else {
// Queue for later or scale up
await this.queueOrScale(task)
}
}
return assignments
}
}
{
"layers": {
"orchestration": {
"teams": [
{
"id": "dev-team",
"name": "Development Team",
"members": [
{
"agentId": "architect",
"role": "lead",
"weight": 1.5
},
{
"agentId": "developer",
"role": "implementer",
"weight": 1.0
}
],
"workflow": {
"strategy": "sequential",
"steps": [
{
"agent": "architect",
"action": "design"
},
{
"agent": "developer",
"action": "implement"
}
]
}
}
],
"loadBalancing": {
"enabled": true,
"strategy": "least-loaded",
"healthCheck": {
"interval": 10000,
"timeout": 5000
}
},
"consensus": {
"defaultThreshold": 0.67,
"tieBreaker": "coordinator"
}
}
}
}
users Team Design

DO:

  • Define clear roles and responsibilities
  • Balance team composition
  • Set appropriate consensus thresholds
  • Plan for conflicts

DON’T:

  • Create teams without clear purpose
  • Overload coordinators
  • Ignore agent capacity
diagram-project Workflow Design

DO:

  • Choose appropriate strategy for task
  • Handle failures gracefully
  • Implement timeout mechanisms
  • Monitor workflow progress

DON’T:

  • Create overly complex workflows
  • Skip error handling
  • Ignore performance bottlenecks