Skip to content

Layer 1: Runtime

The Runtime Layer (L1) is the foundational layer of ARAL, providing the execution environment, resource management, and platform abstraction for AI agents. It serves as the bedrock upon which all other layers are built.

Runtime Layer

Platform

Layer 1: Runtime

Process Manager

Resource Manager

Platform Abstraction

Error Handler

Lifecycle Hooks

Node.js

Python

Docker

Kubernetes

Controls the agent’s lifecycle from initialization to termination.

interface ProcessManager {
// Lifecycle control
start(): Promise<void>
stop(graceful: boolean): Promise<void>
restart(): Promise<void>
// Status monitoring
getStatus(): ProcessStatus
isHealthy(): boolean
// Event hooks
onStart(callback: () => void): void
onStop(callback: () => void): void
onError(callback: (error: Error) => void): void
}
// Example implementation
class AralRuntime implements ProcessManager {
async start(): Promise<void> {
// Initialize runtime
await this.loadConfig()
await this.initializeResources()
await this.registerShutdownHandlers()
console.log('Agent runtime started')
}
async stop(graceful: boolean = true): Promise<void> {
if (graceful) {
// Allow current operations to complete
await this.drainQueue()
await this.closeConnections()
}
await this.releaseResources()
console.log('Agent runtime stopped')
}
}
from abc import ABC, abstractmethod
from typing import Callable
class ProcessManager(ABC):
"""Interface for agent process management"""
@abstractmethod
async def start(self) -> None:
"""Start the agent process"""
pass
@abstractmethod
async def stop(self, graceful: bool = True) -> None:
"""Stop the agent process"""
pass
@abstractmethod
def get_status(self) -> ProcessStatus:
"""Get current process status"""
pass
class AralRuntime(ProcessManager):
async def start(self) -> None:
# Initialize runtime
await self.load_config()
await self.initialize_resources()
await self.register_shutdown_handlers()
print("Agent runtime started")
async def stop(self, graceful: bool = True) -> None:
if graceful:
# Allow current operations to complete
await self.drain_queue()
await self.close_connections()
await self.release_resources()
print("Agent runtime stopped")

Allocates and monitors compute resources (CPU, memory, I/O).

microchip CPU Management
{
"resources": {
"cpu": {
"limit": "2000m", // 2 CPU cores max
"request": "500m", // 0.5 CPU cores guaranteed
"throttling": "enabled"
}
}
}

Best Practices:

  • Set reasonable limits to prevent resource exhaustion
  • Monitor CPU usage and throttle if needed
  • Use worker pools for CPU-intensive tasks
memory Memory Management
{
"resources": {
"memory": {
"limit": "2Gi", // 2GB max
"request": "512Mi", // 512MB guaranteed
"swap": "disabled"
}
}
}

Best Practices:

  • Set memory limits to prevent OOM kills
  • Implement memory leak detection
  • Use streaming for large data processing
  • Clear caches periodically
hard-drive Storage Management
{
"resources": {
"storage": {
"persistent": "/data",
"ephemeral": "/tmp",
"maxSize": "10Gi"
}
}
}

Best Practices:

  • Separate persistent from ephemeral storage
  • Implement disk space monitoring
  • Use cleanup policies for temp files
network-wired Network Management
{
"resources": {
"network": {
"bandwidth": "100Mbps",
"connections": 1000,
"timeout": 30000
}
}
}

Best Practices:

  • Limit concurrent connections
  • Implement connection pooling
  • Set appropriate timeouts
  • Use circuit breakers for external services

Provides a uniform interface across different execution environments.

interface PlatformAbstraction {
// Environment detection
getPlatform(): Platform // 'node' | 'python' | 'deno' | 'bun'
getVersion(): string
// File system operations
readFile(path: string): Promise<Buffer>
writeFile(path: string, data: Buffer): Promise<void>
// Process operations
spawn(command: string, args: string[]): ChildProcess
// Network operations
fetch(url: string, options?: RequestInit): Promise<Response>
}
// Example: Node.js implementation
class NodePlatform implements PlatformAbstraction {
getPlatform(): Platform {
return 'node'
}
getVersion(): string {
return process.version
}
async readFile(path: string): Promise<Buffer> {
return fs.promises.readFile(path)
}
spawn(command: string, args: string[]): ChildProcess {
return child_process.spawn(command, args)
}
}

Detects faults and implements recovery strategies.

class RuntimeErrorHandler {
private retryConfig = {
maxRetries: 3,
backoffMs: 1000,
maxBackoffMs: 30000
}
async executeWithRetry<T>(
fn: () => Promise<T>,
context: string
): Promise<T> {
let lastError: Error
for (let attempt = 0; attempt < this.retryConfig.maxRetries; attempt++) {
try {
return await fn()
} catch (error) {
lastError = error as Error
// Log the error
console.error(`${context} failed (attempt ${attempt + 1}):`, error)
// Calculate backoff
const backoff = Math.min(
this.retryConfig.backoffMs * Math.pow(2, attempt),
this.retryConfig.maxBackoffMs
)
// Wait before retry
await new Promise(resolve => setTimeout(resolve, backoff))
}
}
throw new RuntimeError(
`${context} failed after ${this.retryConfig.maxRetries} attempts`,
lastError
)
}
async handleCriticalError(error: Error): Promise<void> {
// Log error
await this.logError(error)
// Notify monitoring systems
await this.notifyMonitoring(error)
// Attempt graceful shutdown
await this.gracefulShutdown()
}
}
class RuntimeErrorHandler:
def __init__(self):
self.retry_config = {
'max_retries': 3,
'backoff_ms': 1000,
'max_backoff_ms': 30000
}
async def execute_with_retry(self, fn, context: str):
"""Execute function with exponential backoff retry"""
last_error = None
for attempt in range(self.retry_config['max_retries']):
try:
return await fn()
except Exception as error:
last_error = error
# Log the error
print(f"{context} failed (attempt {attempt + 1}): {error}")
# Calculate backoff
backoff = min(
self.retry_config['backoff_ms'] * (2 ** attempt),
self.retry_config['max_backoff_ms']
)
# Wait before retry
await asyncio.sleep(backoff / 1000)
raise RuntimeError(
f"{context} failed after {self.retry_config['max_retries']} attempts",
last_error
)

Complete runtime configuration in agent manifest:

{
"aral": {
"version": "1.0",
"profile": "ARAL-CORE"
},
"layers": {
"runtime": {
"platform": "node",
"version": "20.0.0",
"resources": {
"cpu": {
"limit": "2000m",
"request": "500m"
},
"memory": {
"limit": "2Gi",
"request": "512Mi"
},
"storage": {
"persistent": "/data",
"ephemeral": "/tmp",
"maxSize": "10Gi"
}
},
"lifecycle": {
"startupTimeout": 30000,
"shutdownTimeout": 10000,
"healthcheck": {
"enabled": true,
"interval": 10000,
"timeout": 5000
}
},
"errorHandling": {
"maxRetries": 3,
"backoffStrategy": "exponential",
"circuitBreaker": {
"enabled": true,
"threshold": 5,
"timeout": 60000
}
}
}
}
}
gauge Resource Limits

DO:

  • Set explicit resource limits
  • Monitor resource usage
  • Implement graceful degradation
  • Use resource quotas in production

DON’T:

  • Leave resources unlimited
  • Ignore memory leaks
  • Skip health checks
triangle-exclamation Error Handling

DO:

  • Implement retry with exponential backoff
  • Log all errors with context
  • Use circuit breakers for external deps
  • Fail fast on non-recoverable errors

DON’T:

  • Swallow errors silently
  • Retry indefinitely
  • Block on failed operations
rotate Lifecycle Management

DO:

  • Implement graceful shutdown
  • Clean up resources on exit
  • Handle SIGTERM/SIGINT signals
  • Drain queues before stopping

DON’T:

  • Force kill processes
  • Leave connections open
  • Lose in-flight requests
layer-group Platform Abstraction

DO:

  • Use abstraction interfaces
  • Test on multiple platforms
  • Document platform requirements
  • Handle platform-specific quirks

DON’T:

  • Hardcode platform assumptions
  • Skip cross-platform testing
  • Use platform-specific APIs directly
shield Resource Isolation
  • Use OS-level isolation (containers, sandboxes)
  • Implement resource quotas per agent
  • Prevent resource exhaustion attacks
  • Monitor for suspicious resource usage
lock Process Security
  • Run with least privilege
  • Drop unnecessary capabilities
  • Use secure defaults
  • Validate all inputs at boundaries
file-lines Audit Logging
  • Log all lifecycle events
  • Log resource allocation changes
  • Log error conditions
  • Ensure log integrity
  • Use worker threads/processes for CPU-heavy tasks
  • Implement job queues with priority
  • Cache computation results
  • Profile and optimize hot paths
  • Use streaming for large data
  • Implement memory pooling
  • Clear caches periodically
  • Monitor heap usage
  • Use async I/O operations
  • Batch database queries
  • Implement connection pooling
  • Use CDN for static assets

Key metrics to track:

interface RuntimeMetrics {
// Process metrics
uptime: number
restartCount: number
// Resource metrics
cpuUsage: number // percentage
memoryUsage: number // bytes
diskUsage: number // bytes
// Performance metrics
requestsPerSecond: number
averageLatency: number
errorRate: number
// Health status
isHealthy: boolean
lastHealthCheck: Date
}
import { describe, it, expect } from 'vitest'
import { AralRuntime } from './runtime'
describe('Runtime Layer', () => {
it('should start and stop gracefully', async () => {
const runtime = new AralRuntime()
await runtime.start()
expect(runtime.getStatus()).toBe('running')
await runtime.stop(true)
expect(runtime.getStatus()).toBe('stopped')
})
it('should enforce resource limits', async () => {
const runtime = new AralRuntime({
resources: { memory: { limit: '100Mi' } }
})
await runtime.start()
// Try to allocate more than limit
await expect(
runtime.allocate({ memory: '200Mi' })
).rejects.toThrow('Resource limit exceeded')
})
})
import pytest
from aral.runtime import AralRuntime
@pytest.mark.asyncio
async def test_runtime_lifecycle():
"""Test runtime start and stop"""
runtime = AralRuntime()
await runtime.start()
assert runtime.get_status() == 'running'
await runtime.stop(graceful=True)
assert runtime.get_status() == 'stopped'
@pytest.mark.asyncio
async def test_resource_limits():
"""Test resource limit enforcement"""
runtime = AralRuntime(
resources={'memory': {'limit': '100Mi'}}
)
await runtime.start()
# Try to allocate more than limit
with pytest.raises(ResourceLimitError):
await runtime.allocate(memory='200Mi')

Information

Layer 1 is the foundation. Get this right, and all other layers will benefit from a solid, secure, and performant base.