Layer 1: Runtime
Overview
Section titled “Overview”The Runtime Layer (L1) is the foundational layer of ARAL, providing the execution environment, resource management, and platform abstraction for AI agents. It serves as the bedrock upon which all other layers are built.
Responsibilities
Section titled “Responsibilities”Lifecycle control, spawning, and termination of agent processes
CPU, memory, storage, and network resource management
Uniform interface across different execution environments
Fault detection, recovery, and graceful degradation
Architecture
Section titled “Architecture”Key Components
Section titled “Key Components”1. Process Management
Section titled “1. Process Management”Controls the agent’s lifecycle from initialization to termination.
interface ProcessManager { // Lifecycle control start(): Promise<void> stop(graceful: boolean): Promise<void> restart(): Promise<void>
// Status monitoring getStatus(): ProcessStatus isHealthy(): boolean
// Event hooks onStart(callback: () => void): void onStop(callback: () => void): void onError(callback: (error: Error) => void): void}
// Example implementationclass AralRuntime implements ProcessManager { async start(): Promise<void> { // Initialize runtime await this.loadConfig() await this.initializeResources() await this.registerShutdownHandlers()
console.log('Agent runtime started') }
async stop(graceful: boolean = true): Promise<void> { if (graceful) { // Allow current operations to complete await this.drainQueue() await this.closeConnections() }
await this.releaseResources() console.log('Agent runtime stopped') }}from abc import ABC, abstractmethodfrom typing import Callable
class ProcessManager(ABC): """Interface for agent process management"""
@abstractmethod async def start(self) -> None: """Start the agent process""" pass
@abstractmethod async def stop(self, graceful: bool = True) -> None: """Stop the agent process""" pass
@abstractmethod def get_status(self) -> ProcessStatus: """Get current process status""" pass
class AralRuntime(ProcessManager): async def start(self) -> None: # Initialize runtime await self.load_config() await self.initialize_resources() await self.register_shutdown_handlers()
print("Agent runtime started")
async def stop(self, graceful: bool = True) -> None: if graceful: # Allow current operations to complete await self.drain_queue() await self.close_connections()
await self.release_resources() print("Agent runtime stopped")2. Resource Management
Section titled “2. Resource Management”Allocates and monitors compute resources (CPU, memory, I/O).
CPU Management
{ "resources": { "cpu": { "limit": "2000m", // 2 CPU cores max "request": "500m", // 0.5 CPU cores guaranteed "throttling": "enabled" } }}Best Practices:
- Set reasonable limits to prevent resource exhaustion
- Monitor CPU usage and throttle if needed
- Use worker pools for CPU-intensive tasks
Memory Management
{ "resources": { "memory": { "limit": "2Gi", // 2GB max "request": "512Mi", // 512MB guaranteed "swap": "disabled" } }}Best Practices:
- Set memory limits to prevent OOM kills
- Implement memory leak detection
- Use streaming for large data processing
- Clear caches periodically
Storage Management
{ "resources": { "storage": { "persistent": "/data", "ephemeral": "/tmp", "maxSize": "10Gi" } }}Best Practices:
- Separate persistent from ephemeral storage
- Implement disk space monitoring
- Use cleanup policies for temp files
Network Management
{ "resources": { "network": { "bandwidth": "100Mbps", "connections": 1000, "timeout": 30000 } }}Best Practices:
- Limit concurrent connections
- Implement connection pooling
- Set appropriate timeouts
- Use circuit breakers for external services
3. Platform Abstraction
Section titled “3. Platform Abstraction”Provides a uniform interface across different execution environments.
interface PlatformAbstraction { // Environment detection getPlatform(): Platform // 'node' | 'python' | 'deno' | 'bun' getVersion(): string
// File system operations readFile(path: string): Promise<Buffer> writeFile(path: string, data: Buffer): Promise<void>
// Process operations spawn(command: string, args: string[]): ChildProcess
// Network operations fetch(url: string, options?: RequestInit): Promise<Response>}
// Example: Node.js implementationclass NodePlatform implements PlatformAbstraction { getPlatform(): Platform { return 'node' }
getVersion(): string { return process.version }
async readFile(path: string): Promise<Buffer> { return fs.promises.readFile(path) }
spawn(command: string, args: string[]): ChildProcess { return child_process.spawn(command, args) }}4. Error Handling & Recovery
Section titled “4. Error Handling & Recovery”Detects faults and implements recovery strategies.
class RuntimeErrorHandler { private retryConfig = { maxRetries: 3, backoffMs: 1000, maxBackoffMs: 30000 }
async executeWithRetry<T>( fn: () => Promise<T>, context: string ): Promise<T> { let lastError: Error
for (let attempt = 0; attempt < this.retryConfig.maxRetries; attempt++) { try { return await fn() } catch (error) { lastError = error as Error
// Log the error console.error(`${context} failed (attempt ${attempt + 1}):`, error)
// Calculate backoff const backoff = Math.min( this.retryConfig.backoffMs * Math.pow(2, attempt), this.retryConfig.maxBackoffMs )
// Wait before retry await new Promise(resolve => setTimeout(resolve, backoff)) } }
throw new RuntimeError( `${context} failed after ${this.retryConfig.maxRetries} attempts`, lastError ) }
async handleCriticalError(error: Error): Promise<void> { // Log error await this.logError(error)
// Notify monitoring systems await this.notifyMonitoring(error)
// Attempt graceful shutdown await this.gracefulShutdown() }}class RuntimeErrorHandler: def __init__(self): self.retry_config = { 'max_retries': 3, 'backoff_ms': 1000, 'max_backoff_ms': 30000 }
async def execute_with_retry(self, fn, context: str): """Execute function with exponential backoff retry""" last_error = None
for attempt in range(self.retry_config['max_retries']): try: return await fn() except Exception as error: last_error = error
# Log the error print(f"{context} failed (attempt {attempt + 1}): {error}")
# Calculate backoff backoff = min( self.retry_config['backoff_ms'] * (2 ** attempt), self.retry_config['max_backoff_ms'] )
# Wait before retry await asyncio.sleep(backoff / 1000)
raise RuntimeError( f"{context} failed after {self.retry_config['max_retries']} attempts", last_error )Configuration Example
Section titled “Configuration Example”Complete runtime configuration in agent manifest:
{ "aral": { "version": "1.0", "profile": "ARAL-CORE" }, "layers": { "runtime": { "platform": "node", "version": "20.0.0", "resources": { "cpu": { "limit": "2000m", "request": "500m" }, "memory": { "limit": "2Gi", "request": "512Mi" }, "storage": { "persistent": "/data", "ephemeral": "/tmp", "maxSize": "10Gi" } }, "lifecycle": { "startupTimeout": 30000, "shutdownTimeout": 10000, "healthcheck": { "enabled": true, "interval": 10000, "timeout": 5000 } }, "errorHandling": { "maxRetries": 3, "backoffStrategy": "exponential", "circuitBreaker": { "enabled": true, "threshold": 5, "timeout": 60000 } } } }}Best Practices
Section titled “Best Practices”Resource Limits
✅ DO:
- Set explicit resource limits
- Monitor resource usage
- Implement graceful degradation
- Use resource quotas in production
❌ DON’T:
- Leave resources unlimited
- Ignore memory leaks
- Skip health checks
Error Handling
✅ DO:
- Implement retry with exponential backoff
- Log all errors with context
- Use circuit breakers for external deps
- Fail fast on non-recoverable errors
❌ DON’T:
- Swallow errors silently
- Retry indefinitely
- Block on failed operations
Lifecycle Management
✅ DO:
- Implement graceful shutdown
- Clean up resources on exit
- Handle SIGTERM/SIGINT signals
- Drain queues before stopping
❌ DON’T:
- Force kill processes
- Leave connections open
- Lose in-flight requests
Platform Abstraction
✅ DO:
- Use abstraction interfaces
- Test on multiple platforms
- Document platform requirements
- Handle platform-specific quirks
❌ DON’T:
- Hardcode platform assumptions
- Skip cross-platform testing
- Use platform-specific APIs directly
Security Considerations
Section titled “Security Considerations”Resource Isolation
- Use OS-level isolation (containers, sandboxes)
- Implement resource quotas per agent
- Prevent resource exhaustion attacks
- Monitor for suspicious resource usage
Process Security
- Run with least privilege
- Drop unnecessary capabilities
- Use secure defaults
- Validate all inputs at boundaries
Audit Logging
- Log all lifecycle events
- Log resource allocation changes
- Log error conditions
- Ensure log integrity
Performance Optimization
Section titled “Performance Optimization”- Use worker threads/processes for CPU-heavy tasks
- Implement job queues with priority
- Cache computation results
- Profile and optimize hot paths
- Use streaming for large data
- Implement memory pooling
- Clear caches periodically
- Monitor heap usage
- Use async I/O operations
- Batch database queries
- Implement connection pooling
- Use CDN for static assets
Monitoring & Observability
Section titled “Monitoring & Observability”Key metrics to track:
interface RuntimeMetrics { // Process metrics uptime: number restartCount: number
// Resource metrics cpuUsage: number // percentage memoryUsage: number // bytes diskUsage: number // bytes
// Performance metrics requestsPerSecond: number averageLatency: number errorRate: number
// Health status isHealthy: boolean lastHealthCheck: Date}Testing
Section titled “Testing”import { describe, it, expect } from 'vitest'import { AralRuntime } from './runtime'
describe('Runtime Layer', () => { it('should start and stop gracefully', async () => { const runtime = new AralRuntime()
await runtime.start() expect(runtime.getStatus()).toBe('running')
await runtime.stop(true) expect(runtime.getStatus()).toBe('stopped') })
it('should enforce resource limits', async () => { const runtime = new AralRuntime({ resources: { memory: { limit: '100Mi' } } })
await runtime.start()
// Try to allocate more than limit await expect( runtime.allocate({ memory: '200Mi' }) ).rejects.toThrow('Resource limit exceeded') })})import pytestfrom aral.runtime import AralRuntime
@pytest.mark.asyncioasync def test_runtime_lifecycle(): """Test runtime start and stop""" runtime = AralRuntime()
await runtime.start() assert runtime.get_status() == 'running'
await runtime.stop(graceful=True) assert runtime.get_status() == 'stopped'
@pytest.mark.asyncioasync def test_resource_limits(): """Test resource limit enforcement""" runtime = AralRuntime( resources={'memory': {'limit': '100Mi'}} )
await runtime.start()
# Try to allocate more than limit with pytest.raises(ResourceLimitError): await runtime.allocate(memory='200Mi')Next Steps
Section titled “Next Steps”Build on runtime with state management
See runtime implementation examples
Deploy runtime in production
Read the formal requirements
Layer 1 is the foundation. Get this right, and all other layers will benefit from a solid, secure, and performant base.