Skip to content

FAQ

Quick answers to common questions about ARAL. Organized by audience and topic for easy navigation.



ARAL (Agent Reference Architecture Layers) is an open standard that defines how to build AI agents using a structured 7-layer architecture. Think of it as a blueprint for creating secure, scalable, and compliant AI agents.

ARAL Standard

7 Layers

L1-L5: Single Agent

L6: Multi-Agent

L7: External APIs

Without ARAL:

  • Reinvent the wheel for each agent
  • Security vulnerabilities
  • No standard testing
  • Hard to scale

With ARAL:

  • Proven architecture patterns
  • Built-in security (60 requirements)
  • Conformance testing
  • Easy to scale and integrate

Yes! ARAL is completely free and open:

  • Code: Apache 2.0 License
  • Specifications: Creative Commons CC BY 4.0
  • No vendor lock-in: Use any LLM, any cloud, any language

Start Here

Basic: 30 min

Intermediate: 2-3 hours

Advanced: 6 hours

Production-Ready

  • 30 minutes: Understand concepts + first agent
  • 2-3 hours: Build complete agent with capabilities
  • 6 hours: Production-ready multi-agent system
LanguageStatusSDK Version
PythonProductionv1.2.0
TypeScriptExamplesCommunity
GoExamplesCommunity
RustPlannedv1.3.0
JavaPlannedv1.4.0

Recommendation: Start with Python for production use.


Single chatbot/assistant

Team of agents

Enterprise integration

What are you building?

ARAL-CORE

L1-L5

68 Requirements

ARAL-ORCH

L1-L6

94 Requirements

ARAL-INTEROP

L1-L7

161 Requirements

Quick Decision:

  • ARAL-CORE: You’re learning or building a standalone agent
  • ARAL-ORCH: You need multiple agents working together
  • ARAL-INTEROP: You’re integrating with external enterprise systems

Can I use ARAL with LangChain/AutoGen/CrewAI?

Section titled “Can I use ARAL with LangChain/AutoGen/CrewAI?”

Absolutely! ARAL is designed for interoperability:

# Example: Wrap LangChain in ARAL
from langchain.chains import LLMChain
from aral import Capability
langchain_chain = LLMChain(...)
@Capability(id="langchain_search")
async def search(query: str) -> dict:
result = await langchain_chain.arun(query)
return {"results": result}

See Framework Comparison Guide for detailed migration paths.

Never hardcode secrets! Use vault references:

# ❌ WRONG: Hardcoded secret
API_KEY = "sk-1234567890abcdef"
# ✅ CORRECT: Vault reference (ARAL-S-080)
capability = Capability(
id="api_call",
secrets=["vault://aws/secrets/api-key"]
)

Supported Vaults:

  • AWS Secrets Manager
  • Azure Key Vault
  • HashiCorp Vault
  • Google Secret Manager

Request

L7: 5ms

L6: 10ms

L5: 2ms

L4: 500ms

LLM Call

L3: 50ms

L2: 5ms

L1: 3ms

Response

Total: ~575ms

Key Insights:

  • ARAL overhead: ~75ms (excluding LLM call)
  • LLM call dominates: ~500ms
  • Total: Comparable to other frameworks (< 5% difference)
Terminal window
# Install validator
pip install aral-validator
# Validate conformance
aral-validate ./my-agent.py --profile ARAL-CORE
# Run test suite
aral-test ./my-agent.py --coverage

Expected Output:

✅ ARAL-CORE Conformance: PASS
├─ L1 Runtime: ✅ 15/15
├─ L2 Memory: ✅ 12/12
├─ L3 Capabilities: ✅ 18/18
├─ L4 Reasoning: ✅ 10/10
└─ L5 Persona: ✅ 13/13

Yes! ARAL is LLM-agnostic:

# Multi-LLM routing (ARAL-L4-MLM-*)
from aral import MultiLLMRouter
router = MultiLLMRouter(
providers={
"openai": "gpt-4",
"anthropic": "claude-3",
"local": "llama-3"
},
routing_strategy="cost" # or "latency", "quality"
)
agent = ARALAgent(persona=persona, llm_router=router)

See Multi-LLM Orchestration Guide for details.


ARAL-ORCH (L6) provides built-in horizontal scaling:

Load Balancer

Agent 1

Agent 2

Agent 3

Redis

Shared Memory

PostgreSQL

Long-term

Features:

  • Load balancing (ARAL-L6-004)
  • Circuit breakers (ARAL-L6-007)
  • Shared memory via Redis/Memcached
  • Stateless agent pods (Kubernetes-ready)
Section titled “What’s the recommended deployment architecture?”

Cloud-Native (Kubernetes):

┌─────────────────────────────────────────┐
│ Ingress / API Gateway │
└────────────────┬────────────────────────┘
┌──────────┴──────────┐
│ L7: Protocol │ (1 pod)
│ ARAL-INTEROP │
└──────────┬──────────┘
┌──────────┴──────────┐
│ L6: Orchestrator │ (2 pods)
│ ARAL-ORCH │
└──────────┬──────────┘
┌──────────┴──────────┐
│ L1-L5: Agents │ (10+ pods)
│ ARAL-CORE │
└─────────────────────┘

See Integration Scenarios for AWS, Azure, GCP patterns.

Three integration patterns:

PatternUse CaseComplexity
API GatewayREST/GraphQL APIs⭐ Simple
Message QueueAsync workflows⭐⭐ Medium
DatabaseDirect data access⭐⭐⭐ Complex

Example: API Gateway Integration

# L7: Expose agent via REST API
from aral import ARALAgent, RestAPI
agent = ARALAgent(...)
api = RestAPI(
agent=agent,
endpoints=[
"/chat",
"/capabilities",
"/health"
]
)
api.run(host="0.0.0.0", port=8000)

What’s the TCO compared to custom solutions?

Section titled “What’s the TCO compared to custom solutions?”

ARAL Standard

3-Year TCO: $240K

Dev: $150K

Compliance: $20K ✅

Security: $10K ✅

Maintenance: $60K

Custom Solution

3-Year TCO: $480K

Dev: $180K

Compliance: $120K

Security: $80K

Maintenance: $100K

ARAL Savings:

  • 50% reduction in compliance costs (built-in)
  • 70% reduction in security implementation
  • 40% faster development time

Yes! ARAL includes 60 security requirements (ARAL-S-*):

ARAL Security

Authentication

API Keys

Crypto Signatures

OAuth2/OIDC

Authorization

Role-Based Access

Capability Constraints

Permission Checks

Data Protection

Encryption at Rest

Encryption in Transit

Secrets Management

Audit & Compliance

Comprehensive Logging

Immutable Trails

GDPR Compliance

What security standards does ARAL comply with?

Section titled “What security standards does ARAL comply with?”
StandardComplianceNotes
OWASP LLM Top 10✅ All mitigatedInput sanitization, prompt injection guards
ISO 27001✅ AlignedSecurity controls documented
SOC 2 Type II✅ ReadyAudit trail requirements met
NIST AI RMF✅ CompliantRisk management framework
GDPR✅ 32 requirementsRight to erasure, data portability

Multi-layered defense (ARAL-S-040):

LLMAudit[Audit Log]L4: Prompt GuardL5: Constraint CheckL7: Input SanitizationAttackerLLMAudit[Audit Log]L4: Prompt GuardL5: Constraint CheckL7: Input SanitizationAttackeralt[Malicious Detected][Safe]"Ignore previous instructions..."Detect SQL injection patternsRemove special charactersSanitized inputCheck persona constraintsValidate against allowed commandsConstrained inputApply prompt guard templateDetect jailbreak attempts❌ 403 ForbiddenLog attack attemptSafe prompt

Comprehensive audit trail (ARAL-T-*):

  • ARAL-T-001: All requests logged with trace_id
  • ARAL-T-005: Persona changes tracked
  • ARAL-T-007: Capability executions logged
  • ARAL-T-009: Security events recorded

Export formats: JSON, CEF, Syslog

Terminal window
# Query audit trail
aral-audit query --from="2026-01-01" --event-type="security"

Yes! v1.2.0 is production-ready:

FeatureStatusEvidence
Test Coverage93.34%249/249 tests passing
Security60 requirementsOWASP Top 10 mitigated
Privacy32 requirementsGDPR compliant
StandardsISO/NIST alignedCertification program Q2 2026
SupportCommercial availableEmail: enterprise@aral-standard.org

What compliance certifications does ARAL have?

Section titled “What compliance certifications does ARAL have?”

Current (v1.2.0):

  • Self-certification available
  • ISO 42001 aligned (AI Management)
  • NIST AI RMF compliant
  • GDPR ready

Planned (v1.3.0 - Q2 2026):

  • Official ARAL certification program
  • Third-party security audit
  • SOC 2 Type II report

Yes! ARAL supports offline deployment:

# Use local LLM (no internet required)
from aral import ARALAgent, LocalLLM
llm = LocalLLM(model_path="./llama-3-8b.gguf")
agent = ARALAgent(
persona=persona,
reasoning_engine=llm, # Local, no API calls
capabilities=[...],
memory_backend="sqlite" # Local database
)

Supported local LLMs: Llama, Mistral, Phi, GPT4All

What’s the migration path from legacy systems?

Section titled “What’s the migration path from legacy systems?”

Phased approach:

2-4 weeks

1-2 months

Phase 1:

Wrapper

Phase 2:

Hybrid

Phase 3:

Native

  1. Phase 1 (2-4 weeks): Wrap existing agents as ARAL Capabilities
  2. Phase 2 (1-2 months): Add ARAL security, memory, orchestration
  3. Phase 3 (2-3 months): Rebuild natively in ARAL (optional)

See: Framework Comparison Guide for detailed migration paths.


Easy 4-step process:

1. Sign CLA
2. Follow CoC
3. Choose Issue
4. Submit PR
  1. Sign the CLA: Contributor License Agreement (documentation coming soon)
  2. Follow Code of Conduct: CODE_OF_CONDUCT.md (documentation coming soon)
  3. Choose an issue: Good First Issues
  4. Submit PR: Contributing Guide (documentation coming soon)

Use the RFC (Request for Comments) process:

  1. Create RFC document from template (RFC process documentation coming soon)
  2. Submit as PR to GitHub repository
  3. Community discussion (2 weeks minimum)
  4. Technical Oversight Committee (TOC) review
  5. Decision: Accepted, Rejected, or More Discussion Needed

Recent RFCs:

  • RFC-001: Multi-LLM Routing ✅ Accepted
  • RFC-002: Persona Hot-Swapping ✅ Accepted
  • RFC-003: WebAssembly Runtime 🚧 Under Review

Quick question

Bug report

Feature request

Real-time chat

Enterprise support

Need Help?

Read FAQ

GitHub Issue

GitHub Discussion

Discord soon

Email Support

guides/faq

GitHub Issues

GitHub Discussions

Coming soon

Contact via GitHub

Response Times:

  • Discord: Coming soon
  • GitHub Discussions: 1-2 days (maintainers)
  • GitHub Issues: 2-3 days (priority-based)
  • Email Support: Via GitHub for now

Governance Structure:

┌─────────────────────────────────┐
│ IbIFACE Foundation │
│ (Standard Custodian) │
└────────────┬────────────────────┘
┌─────────┴─────────┐
│ Technical │
│ Oversight │
│ Committee (TOC) │
└─────────┬─────────┘
┌─────────┴─────────────┐
│ │
┌──┴──┐ ┌────┴────┐
│Core │ │Community│
│Team │ │Members │
└─────┘ └─────────┘

See: Governance Documentation (coming soon) for full details.


  • Getting Started - 10-minute quickstart
  • Architecture Guide - Visual diagrams (coming soon)
  • Framework Comparison - vs LangChain/AutoGen/CrewAI
  • Tutorials - 6-hour learning path (coming soon)
  • GitHub Discussions
  • Discord Server (coming soon)
  • Twitter/X (coming soon)
  • LinkedIn (coming soon)

Ask the community:

  1. Search existing discussions
  2. Create a new discussion
  3. Discord - Coming soon for real-time help

Average response time: 24-48 hours


Built with ❤️ by the ARAL Community
© 2026 IbIFACE — Licensed under CC BY 4.0