Skip to content

Integration Scenarios

Real-World Use Cases and Implementation Patterns

Version: 1.1.0
Status: Informative
Date: 2026-01-15


This document provides real-world integration scenarios demonstrating how ARAL-conformant agents can be deployed across various domains and use cases. Each scenario includes architecture patterns, security considerations, and implementation guidance.


  1. Enterprise Knowledge Assistant
  2. Multi-Agent Customer Service
  3. Healthcare Clinical Decision Support
  4. Financial Trading Agent
  5. IoT Smart Home Orchestrator
  6. DevOps Autonomous Operations
  7. Legal Document Analysis
  8. Educational Tutoring System
  9. Supply Chain Optimization
  10. Cross-Organization Agent Collaboration

Domain: Enterprise knowledge management
Conformance Profile: ARAL-INTEROP (L1-L7)
Key Requirements: Security, privacy, multi-source integration

┌─────────────────────────────────────────────────────────┐
│ L7: Protocol REST API, MCP, Slack integration │
├─────────────────────────────────────────────────────────┤
│ L6: Orchestration Query routing, load balancing │
├─────────────────────────────────────────────────────────┤
│ L5: Persona "Enterprise Knowledge Agent" │
│ - Role: Information retrieval │
│ - Constraints: Internal docs only │
├─────────────────────────────────────────────────────────┤
│ L4: Reasoning RAG (Retrieval-Augmented Gen) │
│ - LLM: Claude 3.5 Sonnet │
│ - Embeddings: OpenAI text-embed-3 │
├─────────────────────────────────────────────────────────┤
│ L3: Capabilities - Search knowledge base │
│ - Query SQL databases │
│ - Access Confluence/SharePoint │
├─────────────────────────────────────────────────────────┤
│ L2: Memory - Vector DB: Pinecone │
│ - Conversation history: PostgreSQL │
│ - Cache: Redis │
├─────────────────────────────────────────────────────────┤
│ L1: Runtime Kubernetes cluster (Azure/AWS) │
└─────────────────────────────────────────────────────────┘

Authentication:

  • SSO integration (OIDC/SAML)
  • Service accounts for backend systems
  • JWT token validation

Authorization:

  • RBAC based on AD/LDAP groups
  • Document-level access control
  • Query result filtering by permissions

Data Protection:

  • TLS 1.3 for all communications
  • Encryption at rest (AES-256)
  • PII detection and redaction
  • Audit logging of all queries
  • GDPR Compliance: Employee data anonymization
  • Retention: 90-day conversation history
  • Right to Erasure: Automated deletion workflows
  • Consent: Opt-in for analytics

Persona Manifest:

{
"persona": {
"id": "enterprise-knowledge-assistant",
"name": "Enterprise Knowledge Assistant",
"version": "1.2.0",
"role": "information_retrieval",
"constraints": {
"data_sources": ["internal_only"],
"pii_handling": "redact",
"max_response_time": "5s"
},
"capabilities": [
{
"id": "search_confluence",
"type": "tool",
"provider": "atlassian_api"
},
{
"id": "query_database",
"type": "tool",
"provider": "sql_connector",
"permissions": ["read_only"]
}
],
"memory": {
"short_term": {
"type": "redis",
"ttl": "24h"
},
"long_term": {
"type": "vector_db",
"provider": "pinecone",
"dimensions": 1536
}
},
"security": {
"authentication": "oauth2",
"authorization": "rbac",
"encryption": ["tls_1.3", "aes_256"]
}
}
}

Employee

Slack Bot

Web Interface

API Gateway

Auth Service

Knowledge Agent

Confluence

SharePoint

SQL Database

Vector Store

  • Deploy agent runtime on Kubernetes
  • Configure SSO integration
  • Set up vector database with company documents
  • Configure access control policies
  • Implement audit logging
  • Set up monitoring and alerting
  • Conduct security audit
  • Train employees on usage
  • Establish feedback loop

Domain: Customer support automation
Conformance Profile: ARAL-ORCH (L1-L6)
Key Requirements: Scalability, multi-agent coordination, handoff

┌─────────────────────┐
│ Orchestrator Agent │
│ (Router/Supervisor)│
└──────────┬──────────┘
┌────────────────────┼────────────────────┐
│ │ │
┌─────▼─────┐ ┌────▼────┐ ┌─────▼─────┐
│ Triage │ │ Technical│ │ Billing │
│ Agent │ │ Agent │ │ Agent │
└───────────┘ └──────────┘ └───────────┘
│ │ │
└─────────────────────┴────────────────────┘
┌──────▼───────┐
│ Human Handoff│
│ (Zendesk) │
└──────────────┘

Triage Agent:

  • Persona: First-line support, intent classification
  • Capabilities: Language detection, sentiment analysis, routing
  • Decision Logic: Route to specialist or human

Technical Agent:

  • Persona: Technical troubleshooting
  • Capabilities: Knowledge base search, diagnostic flows, log analysis
  • Integrations: JIRA, GitHub, monitoring systems

Billing Agent:

  • Persona: Billing inquiries, subscription management
  • Capabilities: CRM lookup, payment processing, refund workflows
  • Integrations: Stripe, Salesforce

Message Envelope:

{
"envelope": {
"id": "msg-12345",
"from": "triage-agent",
"to": "technical-agent",
"timestamp": "2026-01-15T14:30:00Z",
"type": "handoff",
"priority": "high",
"context": {
"customer_id": "cust-789",
"conversation_id": "conv-456",
"intent": "technical_issue",
"sentiment": "frustrated",
"history": [ ... ]
},
"payload": {
"issue": "API returning 500 errors",
"attempted_solutions": ["restart", "clear_cache"],
"customer_tier": "enterprise"
}
}
}

Automatic Escalation:

  • Confidence score < 0.7
  • Sentiment: angry/extremely negative
  • Request for human
  • Legal/compliance matters
  • VIP customer
  • Unresolved after 3 agent interactions

KPIs:

  • First contact resolution rate
  • Average handling time
  • Customer satisfaction score (CSAT)
  • Agent confidence scores
  • Escalation rate
  • Cost per interaction

Observability:

  • Distributed tracing (OpenTelemetry)
  • Agent performance dashboards
  • Conversation flow analytics
  • Error rate monitoring

Domain: Healthcare
Conformance Profile: ARAL-CORE (L1-L5)
Key Requirements: HIPAA compliance, safety, explainability

HIPAA Requirements:

  • ✅ Encryption at rest and in transit
  • ✅ Access controls and audit logs
  • ✅ Business Associate Agreement (BAA)
  • ✅ Breach notification procedures
  • ✅ Minimum necessary principle

FDA Software as Medical Device (SaMD):

  • Clinical validation required
  • Risk classification
  • Quality management system (ISO 13485)
  • Post-market surveillance
┌─────────────────────────────────────────────────────────┐
│ Safety Layer: │
│ - Human-in-the-loop (mandatory review) │
│ - Confidence thresholds │
│ - Contraindication checks │
│ - Drug interaction database │
└─────────────────────────────────────────────────────────┘
┌────────┴────────────────────────────────────────────────┐
│ L5: Persona "Clinical Decision Support Agent" │
│ - Role: Recommendation (not decision) │
│ - Constraints: Evidence-based only │
│ - Disclaimers: Not a substitute │
├─────────────────────────────────────────────────────────┤
│ L4: Reasoning Medical knowledge reasoning │
│ - Guidelines: UpToDate, Cochrane │
│ - Evidence grading (A/B/C) │
│ - Differential diagnosis │
├─────────────────────────────────────────────────────────┤
│ L3: Capabilities - EHR integration (HL7 FHIR) │
│ - Medical literature search │
│ - Drug database lookup │
└─────────────────────────────────────────────────────────┘

Mandatory Explanations:

  • Evidence sources (studies, guidelines)
  • Confidence levels
  • Reasoning chain
  • Limitations and caveats
  • Alternative diagnoses considered

Example Output:

Recommendation: Consider prescribing metformin as first-line therapy for Type 2 Diabetes.
Evidence:
- ADA Guidelines 2023 (Grade A recommendation)
- UKPDS Study (N Engl J Med. 1998;339:229-234)
- Cochrane Review (2020): RR 0.87 for cardiovascular outcomes
Confidence: High (92%)
Contraindications to check:
- eGFR < 30 mL/min/1.73m² (renal impairment)
- Severe hepatic impairment
- Lactic acidosis history
Alternative considerations:
- GLP-1 agonist if weight loss desired
- SGLT2 inhibitor if heart failure present
⚠️ This is a clinical decision support tool. Final treatment decision must be made by licensed healthcare provider based on full clinical context.

PHI Protection:

  • De-identification per HIPAA Safe Harbor method
  • Minimum necessary access
  • Audit logs for all PHI access
  • Patient consent for data use
  • Right to access and amendment

Domain: Financial services
Conformance Profile: ARAL-CORE (L1-L5)
Key Requirements: Low latency, audit trails, risk management

Regulations:

  • MiFID II (EU Markets in Financial Instruments Directive)
  • SEC Rule 15c3-5 (US Market Access Rule)
  • ESMA guidelines on algorithmic trading
  • FCA Handbook (UK)

Mandatory Controls:

  • Pre-trade risk controls
  • Kill switch mechanism
  • Order throttling
  • Market maker obligations
  • Best execution requirements
  • Transaction reporting (within 1 minute)
┌─────────────────────────────────────────────────────────┐
│ Risk Controls (Hardware/Software Circuit Breakers) │
│ - Max order size │
│ - Max position limits │
│ - Loss limits (daily/weekly) │
│ - Volatility filters │
│ - Fat finger protection │
└─────────────────────────────────────────────────────────┘
┌────────┴────────────────────────────────────────────────┐
│ L5: Persona "Trading Agent" │
│ - Strategy: Market making │
│ - Risk tolerance: Low │
│ - Regulatory: MiFID II compliant │
├─────────────────────────────────────────────────────────┤
│ L4: Reasoning Reinforcement learning model │
│ - Market microstructure analysis │
│ - Order book dynamics │
│ - Latency: <100μs inference │
├─────────────────────────────────────────────────────────┤
│ L3: Capabilities - FIX protocol integration │
│ - Market data feeds │
│ - Order placement/cancellation │
├─────────────────────────────────────────────────────────┤
│ L2: Memory - Order book state (in-memory) │
│ - Historical trades (TimescaleDB) │
│ - Strategy parameters (Redis) │
├─────────────────────────────────────────────────────────┤
│ L1: Runtime Bare metal servers (co-location) │
│ - OS: Linux RT kernel │
│ - Network: DPDK, RDMA │
└─────────────────────────────────────────────────────────┘

Trade Reconstruction:

  • Full audit trail of all decisions
  • Model version and parameters
  • Market data snapshot at decision time
  • Reasoning for each trade
  • Retention: 7 years (MiFID II)

Audit Log Example:

{
"event_id": "trade-12345",
"timestamp": "2026-01-15T14:30:00.123456Z",
"agent_id": "trading-agent-001",
"model_version": "v2.3.1",
"action": "buy",
"instrument": "AAPL",
"quantity": 100,
"price": 150.25,
"reasoning": {
"signal_strength": 0.82,
"features": {
"bid_ask_spread": 0.01,
"order_imbalance": 0.65,
"volatility": 0.015
},
"risk_checks": {
"position_limit": "pass",
"daily_loss_limit": "pass",
"volatility_filter": "pass"
}
},
"market_data": { ... },
"result": {
"order_id": "ord-67890",
"execution_price": 150.26,
"slippage": 0.01
}
}

Domain: Smart home automation
Conformance Profile: ARAL-ORCH (L1-L6)
Key Requirements: Low power, local execution, privacy

┌───────────────────────────────────────┐
│ Cloud Layer (Optional) │
│ - Voice assistant integration │
│ - Remote access │
│ - OTA updates │
└─────────────┬─────────────────────────┘
┌─────────────▼─────────────────────────┐
│ Edge Gateway (ARAL Agent) │
│ - Raspberry Pi / NVIDIA Jetson │
│ - Local inference (TFLite/ONNX) │
│ - Matter/Thread protocol support │
└─────────────┬─────────────────────────┘
┌─────────┼─────────┬─────────┐
│ │ │ │
┌───▼───┐ ┌──▼──┐ ┌──▼──┐ ┌──▼──┐
│Lights │ │Locks│ │HVAC │ │Camera│
└───────┘ └─────┘ └─────┘ └─────┘

Local Processing:

  • Voice commands processed on-device
  • Video analysis at edge (no cloud upload)
  • Encrypted local storage
  • Network-isolated operation mode

Data Minimization:

  • No personal data sent to cloud
  • Aggregated telemetry only (opt-in)
  • Automatic deletion of video after 24h
  • Anonymous usage statistics
{
"persona": {
"id": "smart-home-orchestrator",
"name": "Home Automation Agent",
"constraints": {
"privacy_mode": "maximum",
"cloud_access": false,
"voice_retention": "none",
"video_retention": "24h"
},
"capabilities": [
{
"id": "control_lights",
"protocol": "matter",
"devices": ["living_room", "bedroom", "kitchen"]
},
{
"id": "manage_hvac",
"protocol": "zigbee",
"learning_enabled": true
}
],
"reasoning": {
"model": "tflite",
"inference_location": "edge",
"latency_requirement": "<200ms"
}
}
}

Domain: IT operations
Conformance Profile: ARAL-ORCH (L1-L6)
Key Requirements: Reliability, observability, human oversight

┌─────────────────────────────────────────────────────────┐
│ L6: Orchestration Multi-agent coordination │
│ - Incident Commander Agent │
│ - Diagnostics Agent │
│ - Remediation Agent │
│ - Communication Agent │
├─────────────────────────────────────────────────────────┤
│ L4: Reasoning - Anomaly detection (ML) │
│ - Root cause analysis (LLM) │
│ - Runbook selection │
│ - Impact assessment │
├─────────────────────────────────────────────────────────┤
│ L3: Capabilities - Kubernetes API │
│ - Cloud provider APIs │
│ - Terraform/Ansible │
│ - PagerDuty/Slack │
├─────────────────────────────────────────────────────────┤
│ L2: Memory - Metrics: Prometheus │
│ - Logs: Elasticsearch │
│ - Traces: Jaeger │
│ - Incidents: PostgreSQL │
└─────────────────────────────────────────────────────────┘

Incident Detection → Analysis → Remediation

Example Flow:

  1. Detection: High error rate on API service
  2. Analysis:
    • Check recent deployments
    • Analyze error logs
    • Query metrics (CPU, memory, network)
    • Review traces for slow requests
  3. Diagnosis: New deployment causing memory leak
  4. Remediation Options:
    • Option A: Rollback to previous version (low risk)
    • Option B: Scale up pods (temporary mitigation)
    • Option C: Apply hotfix (requires testing)
  5. Decision: Agent recommends rollback
  6. Human Approval: Required for production changes
  7. Execution: Automated rollback via CI/CD
  8. Verification: Monitor metrics for 15 minutes
  9. Communication: Update Slack channel, close PagerDuty incident

Change Approval Matrix:

Action TypeDevStagingProduction
Read-only queriesAutoAutoAuto
Config changesAutoAutoApproval
Scaling (within limits)AutoAutoAuto
DeploymentsAutoApprovalApproval
Database changesApprovalApprovalManual
Service restartsAutoAutoApproval

Blast Radius Limits:

  • Max 20% of fleet at once
  • Canary deployments first
  • Automatic rollback on error spike
  • Rate limiting on API calls

Domain: Legal tech
Conformance Profile: ARAL-CORE (L1-L5)
Key Requirements: Accuracy, confidentiality, explainability

  • Contract review and risk analysis
  • Legal research and case law search
  • Due diligence document processing
  • Regulatory compliance checking
  • E-discovery and document classification

Confidentiality Controls:

  • Attorney-client privilege protection
  • End-to-end encryption
  • Zero-knowledge architecture
  • No training on client data
  • Isolated tenant environments

Access Controls:

  • Multi-factor authentication
  • Client matter codes
  • Need-to-know access
  • Time-limited document access
  • Watermarking and DRM

Yes

No

Upload Contract

Document Classification

Clause Extraction

Risk Analysis

High Risk Clauses?

Flag for Attorney Review

Generate Summary

Attorney Review

Final Report

Risk Categories:

  • 🔴 High: Unlimited liability, broad indemnification
  • 🟡 Medium: Unfavorable payment terms, restrictive IP clauses
  • 🟢 Low: Standard confidentiality, typical termination clauses

Clause-Level Annotations:

Clause: "Vendor shall indemnify Client for any and all claims..."
⚠️ RISK: High
ISSUE: Unlimited indemnification obligation
PRECEDENT: Similar clause upheld in Smith v. Acme Corp (2023)
RECOMMENDATION: Negotiate cap at 2x contract value
ALTERNATIVE LANGUAGE: "...up to a maximum of two times the total contract value..."

Domain: Education technology
Conformance Profile: ARAL-CORE (L1-L5)
Key Requirements: Personalization, safety, COPPA compliance

COPPA Compliance (Children’s Online Privacy Protection Act):

  • Parental consent for users under 13
  • No behavioral advertising
  • Data minimization
  • Right to delete child’s data
  • Clear privacy notice

Content Safety:

  • Content filtering (profanity, violence)
  • Age-appropriate materials
  • Moderation of generated content
  • Anti-cheating measures
  • Cyberbullying detection
┌─────────────────────────────────────────────────────────┐
│ L5: Persona "Math Tutor Agent" │
│ - Subject: Algebra │
│ - Grade level: 8th │
│ - Teaching style: Socratic │
├─────────────────────────────────────────────────────────┤
│ L4: Reasoning - Learning science principles │
│ - Zone of proximal development │
│ - Spaced repetition │
│ - Retrieval practice │
├─────────────────────────────────────────────────────────┤
│ L3: Capabilities - Problem generation │
│ - Step-by-step hints │
│ - Mistake analysis │
│ - Progress tracking │
├─────────────────────────────────────────────────────────┤
│ L2: Memory Student Model: │
│ - Mastery levels per topic │
│ - Common mistakes │
│ - Learning pace │
│ - Engagement patterns │
└─────────────────────────────────────────────────────────┘

Student Model Attributes:

  • Current knowledge state (Bayesian Knowledge Tracing)
  • Learning preferences (visual/verbal/kinesthetic)
  • Optimal difficulty level
  • Session duration preferences
  • Time of day patterns

Adaptive Strategies:

  • Increase difficulty when mastery demonstrated
  • Provide scaffolding for struggling concepts
  • Interleave topics for better retention
  • Adjust pace based on engagement signals

Domain: Logistics and supply chain
Conformance Profile: ARAL-ORCH (L1-L6)
Key Requirements: Multi-party coordination, real-time optimization

┌────────────────┐ ┌────────────────┐ ┌────────────────┐
│ Manufacturer │ │ Distributor │ │ Retailer │
│ Agent │◄───►│ Agent │◄───►│ Agent │
└────────┬───────┘ └────────┬───────┘ └────────┬───────┘
│ │ │
└──────────────────────┼──────────────────────┘
┌───────────▼───────────┐
│ Coordination Agent │
│ (Neutral Third Party)│
└───────────────────────┘

Shared Information (via L7 Protocol):

  • Inventory levels (aggregated)
  • Demand forecasts
  • Capacity constraints
  • Lead times
  • Pricing (where permitted)

Private Information (not shared):

  • Supplier relationships
  • Cost structures
  • Strategic plans
  • Customer lists

Multi-Objective Optimization:

  • Minimize total cost
  • Maximize service level (fill rate)
  • Minimize carbon footprint
  • Balance inventory across network
  • Reduce stockouts and overstocks

Example Decision:

Scenario: Increased demand for Product X in Region A
Manufacturer Agent:
- Increase production by 20%
- Allocate extra capacity
Distributor Agent:
- Reroute shipments from low-demand Region B
- Expedite delivery to Region A
Retailer Agent:
- Accept higher shipment frequency
- Optimize shelf space
Coordination Agent:
- Validates no conflicts
- Optimizes truck routes
- Minimizes total network cost

10. Cross-Organization Agent Collaboration

Section titled “10. Cross-Organization Agent Collaboration”

Domain: Inter-enterprise collaboration
Conformance Profile: ARAL-INTEROP (L1-L7)
Key Requirements: Standardized protocols, trust, federation

┌─────────────────────────────────────────────────────────┐
│ Agent Directory │
│ (Decentralized Registry) │
│ - Agent discovery │
│ - Capability advertisement │
│ - Trust anchors │
└────────────────┬────────────────────────────────────────┘
┌───────────┼───────────┬───────────┐
│ │ │ │
┌────▼────┐ ┌───▼────┐ ┌────▼────┐ ┌───▼────┐
│ Org A │ │ Org B │ │ Org C │ │ Org D │
│ Agent │ │ Agent │ │ Agent │ │ Agent │
└─────────┘ └────────┘ └─────────┘ └────────┘

Identity & Authentication:

  • X.509 certificates (PKI)
  • Mutual TLS (mTLS)
  • DID (Decentralized Identifiers)
  • OAuth 2.0 for delegation

Authorization:

  • Capability-based access control
  • Signed capability tokens
  • Time-limited permissions
  • Audit trail requirements

Agent-to-Agent Protocol:

{
"protocol": "aral-a2a",
"version": "1.0",
"message": {
"id": "msg-abc123",
"from": {
"agent_id": "org-a-agent-001",
"organization": "company-a.com",
"certificate": "-----BEGIN CERTIFICATE-----..."
},
"to": {
"agent_id": "org-b-agent-005",
"organization": "company-b.com"
},
"timestamp": "2026-01-15T14:30:00Z",
"ttl": 3600,
"type": "request",
"action": "query_inventory",
"payload": {
"product_id": "SKU-12345",
"quantity": 1000,
"delivery_date": "2026-02-01"
},
"signature": "-----BEGIN SIGNATURE-----..."
}
}

10.5 Use Case: Healthcare Information Exchange

Section titled “10.5 Use Case: Healthcare Information Exchange”

Scenario: Patient transfers between hospitals

Agents Involved:

  • Hospital A: Discharge planning agent
  • Hospital B: Admission coordination agent
  • Payer: Authorization agent
  • Patient: Personal health agent (PHR)

Workflow:

  1. Hospital A agent initiates transfer request
  2. Patient agent verifies consent
  3. Hospital B agent checks bed availability
  4. Payer agent pre-authorizes admission
  5. Secure health record transfer (HL7 FHIR)
  6. Medication reconciliation agent prevents conflicts
  7. Audit trail recorded by all parties

Benefits:

  • Reduced delays (48h → 4h average)
  • Fewer medical errors
  • Better patient experience
  • Automated compliance documentation

These integration scenarios demonstrate the versatility and power of ARAL-conformant agents across diverse domains. Key success factors include:

  1. Clear Architecture: Layer separation enables modularity
  2. Security First: Built-in security controls at each layer
  3. Privacy by Design: GDPR compliance from the start
  4. Interoperability: Standard protocols enable collaboration
  5. Human Oversight: Critical decisions require human approval
  6. Auditability: Full traceability for compliance and debugging

Organizations implementing ARAL agents should:

  • Start with a clear conformance profile (CORE, ORCH, or INTEROP)
  • Conduct thorough security and privacy assessments
  • Implement comprehensive monitoring and observability
  • Plan for human-in-the-loop workflows
  • Establish clear governance and accountability

Domain: Enterprise customer service
Conformance Profile: ARAL-INTEROP (L1-L7)
Technology Stack: Modern cloud-native architecture

┌─────────────────────────────────────────────────────────────────┐
│ CUSTOMER SUPPORT AGENT │
├─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬────┤
│ L7 │ L6 │ L5 │ L4 │ L3 │ L2 │ L1 │
├─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼────┤
│ Cloud │Temporal │Keycloak │LangChain│ Zendesk │ Redis + │ K8s│
│ Events │ │ + OPA │ + DMN │ API │ Qdrant │ │
└─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴────┘

Layer Implementations:

  • L7 (Protocol): CloudEvents for event-driven architecture, async messaging
  • L6 (Orchestration): Temporal for workflow orchestration, durable execution
  • L5 (Persona): Keycloak for identity, OPA (Open Policy Agent) for authorization
  • L4 (Reasoning): LangChain for LLM orchestration, DMN (Decision Model Notation)
  • L3 (Capabilities): Zendesk API integration for ticket management
  • L2 (Memory): Redis for caching, Qdrant for vector similarity search
  • L1 (Runtime): Kubernetes cluster for container orchestration

Key Features:

  • Multi-tenant architecture with isolated namespaces
  • Real-time sentiment analysis and escalation
  • Automated ticket routing and triage
  • Context-aware conversation history
  • SLA-driven prioritization

Domain: Banking and financial services
Conformance Profile: ARAL-ORCH (L1-L6)
Technology Stack: AWS-native with compliance focus

┌─────────────────────────────────────────────────────────────────┐
│ DOCUMENT PROCESSING PIPELINE │
├─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬────┤
│ L7 │ L6 │ L5 │ L4 │ L3 │ L2 │ L1 │
├─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼────┤
│ AsyncAPI│ Argo │ SPIFFE │ GPT-4 │ AWS │Postgres │EKS │
│ + Kafka │Workflows│ + Cedar │+ Drools │Textract │+ S3 │ │
└─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴────┘

Layer Implementations:

  • L7 (Protocol): AsyncAPI for event schemas, Kafka for message streaming
  • L6 (Orchestration): Argo Workflows for Kubernetes-native pipelines
  • L5 (Persona): SPIFFE/SPIRE for service identity, Cedar for policy language
  • L4 (Reasoning): GPT-4 for document understanding, Drools for business rules
  • L3 (Capabilities): AWS Textract for OCR and document extraction
  • L2 (Memory): PostgreSQL for structured data, S3 for document storage
  • L1 (Runtime): Amazon EKS (Elastic Kubernetes Service)

Key Features:

  • PII detection and redaction
  • Regulatory compliance checks (KYC, AML)
  • Multi-language document support
  • Audit trail for all processing steps
  • SOC 2 Type II compliant architecture

Domain: Academic research and knowledge synthesis
Conformance Profile: ARAL-INTEROP (L1-L7)
Technology Stack: Advanced AI agent collaboration

┌─────────────────────────────────────────────────────────────────┐
│ RESEARCH AGENT COLLECTIVE │
├─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬────┤
│ L7 │ L6 │ L5 │ L4 │ L3 │ L2 │ L1 │
├─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼────┤
│ gRPC │ CrewAI │ Auth0 │LangGraph│ MCP │ Neo4j + │GKE │
│+ Events │+ Tempora│ + OPA │+ Claude │ Servers │ Weaviate│ │
└─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴────┘

Layer Implementations:

  • L7 (Protocol): gRPC for efficient RPC, CloudEvents for async communication
  • L6 (Orchestration): CrewAI for multi-agent coordination, Temporal for workflows
  • L5 (Persona): Auth0 for authentication, OPA for fine-grained authorization
  • L4 (Reasoning): LangGraph for agent state machines, Claude for deep analysis
  • L3 (Capabilities): MCP (Model Context Protocol) servers for tool integration
  • L2 (Memory): Neo4j for knowledge graphs, Weaviate for semantic search
  • L1 (Runtime): Google Kubernetes Engine (GKE)

Agent Roles:

  1. Literature Review Agent: Searches academic databases, extracts key findings
  2. Synthesis Agent: Combines insights, identifies patterns and gaps
  3. Critique Agent: Evaluates methodology, identifies biases
  4. Citation Agent: Manages references, formats bibliographies
  5. Writing Agent: Generates research summaries and reports

Coordination Modes:

  • Debate Mode: Agents argue different interpretations of findings
  • Consensus Mode: Voting on confidence levels for claims
  • Chain Mode: Sequential analysis pipeline (search → analyze → critique → write)
  • Parallel Mode: Concurrent literature searches across databases

This matrix defines the conformance requirements for each layer across the three ARAL profiles.

LayerMUST (Obligatoire)SHOULD (Recommandé)MAY (Optionnel)
L1: Runtime• Container isolation
• Resource limits
• Health checks
• Graceful shutdown
• Metrics endpoint
• Hot reload
• Backpressure
• GPU acceleration
• Custom schedulers
• Multi-region
L2: Memory• Durable state store
• TTL-based expiration
• Namespace isolation
• Event sourcing
• CQRS pattern
• Encryption at rest
• Vector memory
• Distributed cache
• Time-travel debugging
L3: Capabilities• OpenAPI contract
• Permission checks
• Input validation
• Service discovery
• Circuit breaker
• Rate limiting
• MCP support
• Plugin system
• Capability marketplace
LayerMUST (Obligatoire)SHOULD (Recommandé)MAY (Optionnel)
L4: Reasoning• Traceable decisions
• Timeout enforcement
• Error handling
• Guardrails
• Prompt injection defense
• Token limits
• Hybrid reasoning
• Model ensemble
• Reinforcement learning
L5: Persona• Agent identity
• Immutable at runtime
• Validation at startup
• Policy-as-code
• Cryptographic signing
• Constraint enforcement
• Verifiable credentials
• DID support
• Persona marketplace
LayerMUST (Obligatoire)SHOULD (Recommandé)MAY (Optionnel)
L6: Orchestration• Retry policies
• Load balancing
• Circuit breaker
• Saga support
• Graceful degradation
• Priority queues
• Multi-agent choreography
• Agent discovery
• Consensus protocols
L7: Protocol• CloudEvents envelope
• Trace propagation
• Standard auth
• Schema versioning
• Content negotiation
• Compression
• Federation protocol
• P2P communication
• Blockchain integration

Target: Standalone autonomous agents

Required Layers: L1, L2, L3, L4, L5
Optional Layers: None
Compliance Level: All MUST requirements for L1-L5

Use Cases:

  • Personal AI assistants
  • Single-purpose automation
  • Edge computing agents
  • Embedded systems

Target: Multi-agent orchestration

Required Layers: L1, L2, L3, L4, L5, L6
Optional Layers: L7 (for enhanced interop)
Compliance Level: All MUST requirements for L1-L6

Use Cases:

  • Enterprise multi-agent systems
  • Swarm intelligence
  • Distributed problem solving
  • Collaborative agents

Target: Cross-system interoperability

Required Layers: L1, L2, L3, L4, L5, L6, L7
Optional Layers: None
Compliance Level: All MUST requirements for L1-L7

Use Cases:

  • Inter-enterprise collaboration
  • Federated agent networks
  • Industry consortiums
  • Public agent services

  • Unique agent instance ID
  • Graceful shutdown (configurable timeout)
  • Health check endpoint (HTTP/gRPC)
  • Resource quotas (CPU, memory, connections)
  • Lifecycle event logging
  • Request timeout enforcement
  • Metrics endpoint (Prometheus format)
  • Working memory (in-process or Redis)
  • TTL-based expiration
  • Atomic read-modify-write
  • Namespace isolation
  • Clear/delete operations
  • Memory stats endpoint
  • Capability registry
  • Permission-based access control
  • Input/output validation (JSON Schema)
  • Capability not found error handling
  • Execution timeout enforcement
  • Result validation
  • LLM provider abstraction
  • Token counting and limits
  • Prompt construction
  • Response parsing
  • Error handling (rate limits, timeouts)
  • Decision audit logging
  • Persona definition (JSON)
  • Validation at startup
  • Immutability at runtime (hot-swap requires restart)
  • Constraint checking
  • Persona ID in all logs
  • Version compatibility check
  • Agent routing
  • Persona constraint enforcement
  • Circuit breaker pattern
  • Graceful failure handling
  • Routing decision logging
  • Request timeout
  • Trace context propagation
  • Envelope format (CloudEvents or ARAL standard)
  • trace_id propagation
  • Timestamp validation
  • Authentication (OAuth 2.0, mTLS)
  • Rate limiting
  • TTL enforcement
  • Protocol version negotiation

LayerTechnologyNotes
L7API Gateway + EventBridgeREST + async events
L6Step FunctionsWorkflow orchestration
L5IAM + CognitoIdentity & access
L4Bedrock (Claude/Titan)Managed LLM service
L3Lambda + API GatewayServerless capabilities
L2DynamoDB + ElastiCacheNoSQL + caching
L1ECS Fargate / EKSContainer runtime

Cost Model: Pay-per-use, serverless-first


LayerTechnologyNotes
L7Kong API GatewayEnterprise API management
L6Apache AirflowWorkflow orchestration
L5Keycloak + OPAOpen source IAM
L4Ollama (local LLM)On-prem model serving
L3Custom Python servicesBusiness logic
L2PostgreSQL + RedisRDBMS + cache
L1Kubernetes (on-prem)Container orchestration

Cost Model: Fixed infrastructure costs, full control


LayerTechnologyNotes
L7MQTT + CoAPLightweight protocols
L6EdgeX FoundryIoT edge framework
L5Lightweight JWTToken-based auth
L4TensorFlow LiteOn-device inference
L3gRPC servicesEfficient RPC
L2SQLite + LevelDBEmbedded database
L1Docker (ARM)Containerized edge

Cost Model: Resource-constrained, offline-capable


These end-to-end scenarios demonstrate ARAL’s flexibility across diverse domains, scales, and technology stacks. The conformance matrix provides clear guidance on implementation requirements, ensuring interoperability while allowing technology choice flexibility.

Key Takeaways:

  1. Layered Architecture: Each layer has distinct responsibilities and can be implemented independently
  2. Technology Agnostic: ARAL defines interfaces, not implementations
  3. Scalability: From edge devices to enterprise multi-agent systems
  4. Compliance: Built-in support for regulatory requirements (GDPR, HIPAA, etc.)
  5. Interoperability: Standard protocols enable cross-organization collaboration

References:

  • ARAL-CORE-1.0
  • ARAL-SECURITY-1.0
  • ARAL-PRIVACY-1.0
  • ARAL-PROTOCOL-1.0
  • ARAL-CONFORMANCE-1.0

License: CC-BY-4.0
Copyright: © 2026 ARAL Standard Contributors