Integration Scenarios
ARAL Integration Scenarios
Section titled “ARAL Integration Scenarios”Real-World Use Cases and Implementation Patterns
Version: 1.1.0
Status: Informative
Date: 2026-01-15
Overview
Section titled “Overview”This document provides real-world integration scenarios demonstrating how ARAL-conformant agents can be deployed across various domains and use cases. Each scenario includes architecture patterns, security considerations, and implementation guidance.
Table of Contents
Section titled “Table of Contents”- Enterprise Knowledge Assistant
- Multi-Agent Customer Service
- Healthcare Clinical Decision Support
- Financial Trading Agent
- IoT Smart Home Orchestrator
- DevOps Autonomous Operations
- Legal Document Analysis
- Educational Tutoring System
- Supply Chain Optimization
- Cross-Organization Agent Collaboration
1. Enterprise Knowledge Assistant
Section titled “1. Enterprise Knowledge Assistant”1.1 Scenario Overview
Section titled “1.1 Scenario Overview”Domain: Enterprise knowledge management
Conformance Profile: ARAL-INTEROP (L1-L7)
Key Requirements: Security, privacy, multi-source integration
1.2 Architecture
Section titled “1.2 Architecture”┌─────────────────────────────────────────────────────────┐│ L7: Protocol REST API, MCP, Slack integration │├─────────────────────────────────────────────────────────┤│ L6: Orchestration Query routing, load balancing │├─────────────────────────────────────────────────────────┤│ L5: Persona "Enterprise Knowledge Agent" ││ - Role: Information retrieval ││ - Constraints: Internal docs only │├─────────────────────────────────────────────────────────┤│ L4: Reasoning RAG (Retrieval-Augmented Gen) ││ - LLM: Claude 3.5 Sonnet ││ - Embeddings: OpenAI text-embed-3 │├─────────────────────────────────────────────────────────┤│ L3: Capabilities - Search knowledge base ││ - Query SQL databases ││ - Access Confluence/SharePoint │├─────────────────────────────────────────────────────────┤│ L2: Memory - Vector DB: Pinecone ││ - Conversation history: PostgreSQL ││ - Cache: Redis │├─────────────────────────────────────────────────────────┤│ L1: Runtime Kubernetes cluster (Azure/AWS) │└─────────────────────────────────────────────────────────┘1.3 Security Considerations
Section titled “1.3 Security Considerations”Authentication:
- SSO integration (OIDC/SAML)
- Service accounts for backend systems
- JWT token validation
Authorization:
- RBAC based on AD/LDAP groups
- Document-level access control
- Query result filtering by permissions
Data Protection:
- TLS 1.3 for all communications
- Encryption at rest (AES-256)
- PII detection and redaction
- Audit logging of all queries
1.4 Privacy Requirements
Section titled “1.4 Privacy Requirements”- GDPR Compliance: Employee data anonymization
- Retention: 90-day conversation history
- Right to Erasure: Automated deletion workflows
- Consent: Opt-in for analytics
1.5 Implementation Example
Section titled “1.5 Implementation Example”Persona Manifest:
{ "persona": { "id": "enterprise-knowledge-assistant", "name": "Enterprise Knowledge Assistant", "version": "1.2.0", "role": "information_retrieval", "constraints": { "data_sources": ["internal_only"], "pii_handling": "redact", "max_response_time": "5s" }, "capabilities": [ { "id": "search_confluence", "type": "tool", "provider": "atlassian_api" }, { "id": "query_database", "type": "tool", "provider": "sql_connector", "permissions": ["read_only"] } ], "memory": { "short_term": { "type": "redis", "ttl": "24h" }, "long_term": { "type": "vector_db", "provider": "pinecone", "dimensions": 1536 } }, "security": { "authentication": "oauth2", "authorization": "rbac", "encryption": ["tls_1.3", "aes_256"] } }}1.6 Integration Pattern
Section titled “1.6 Integration Pattern”1.7 Deployment Checklist
Section titled “1.7 Deployment Checklist”- Deploy agent runtime on Kubernetes
- Configure SSO integration
- Set up vector database with company documents
- Configure access control policies
- Implement audit logging
- Set up monitoring and alerting
- Conduct security audit
- Train employees on usage
- Establish feedback loop
2. Multi-Agent Customer Service
Section titled “2. Multi-Agent Customer Service”2.1 Scenario Overview
Section titled “2.1 Scenario Overview”Domain: Customer support automation
Conformance Profile: ARAL-ORCH (L1-L6)
Key Requirements: Scalability, multi-agent coordination, handoff
2.2 Multi-Agent Architecture
Section titled “2.2 Multi-Agent Architecture” ┌─────────────────────┐ │ Orchestrator Agent │ │ (Router/Supervisor)│ └──────────┬──────────┘ │ ┌────────────────────┼────────────────────┐ │ │ │ ┌─────▼─────┐ ┌────▼────┐ ┌─────▼─────┐ │ Triage │ │ Technical│ │ Billing │ │ Agent │ │ Agent │ │ Agent │ └───────────┘ └──────────┘ └───────────┘ │ │ │ └─────────────────────┴────────────────────┘ │ ┌──────▼───────┐ │ Human Handoff│ │ (Zendesk) │ └──────────────┘2.3 Agent Specializations
Section titled “2.3 Agent Specializations”Triage Agent:
- Persona: First-line support, intent classification
- Capabilities: Language detection, sentiment analysis, routing
- Decision Logic: Route to specialist or human
Technical Agent:
- Persona: Technical troubleshooting
- Capabilities: Knowledge base search, diagnostic flows, log analysis
- Integrations: JIRA, GitHub, monitoring systems
Billing Agent:
- Persona: Billing inquiries, subscription management
- Capabilities: CRM lookup, payment processing, refund workflows
- Integrations: Stripe, Salesforce
2.4 Orchestration Protocol
Section titled “2.4 Orchestration Protocol”Message Envelope:
{ "envelope": { "id": "msg-12345", "from": "triage-agent", "to": "technical-agent", "timestamp": "2026-01-15T14:30:00Z", "type": "handoff", "priority": "high", "context": { "customer_id": "cust-789", "conversation_id": "conv-456", "intent": "technical_issue", "sentiment": "frustrated", "history": [ ... ] }, "payload": { "issue": "API returning 500 errors", "attempted_solutions": ["restart", "clear_cache"], "customer_tier": "enterprise" } }}2.5 Human Handoff Criteria
Section titled “2.5 Human Handoff Criteria”Automatic Escalation:
- Confidence score < 0.7
- Sentiment: angry/extremely negative
- Request for human
- Legal/compliance matters
- VIP customer
- Unresolved after 3 agent interactions
2.6 Metrics & Monitoring
Section titled “2.6 Metrics & Monitoring”KPIs:
- First contact resolution rate
- Average handling time
- Customer satisfaction score (CSAT)
- Agent confidence scores
- Escalation rate
- Cost per interaction
Observability:
- Distributed tracing (OpenTelemetry)
- Agent performance dashboards
- Conversation flow analytics
- Error rate monitoring
3. Healthcare Clinical Decision Support
Section titled “3. Healthcare Clinical Decision Support”3.1 Scenario Overview
Section titled “3.1 Scenario Overview”Domain: Healthcare
Conformance Profile: ARAL-CORE (L1-L5)
Key Requirements: HIPAA compliance, safety, explainability
3.2 Regulatory Considerations
Section titled “3.2 Regulatory Considerations”HIPAA Requirements:
- ✅ Encryption at rest and in transit
- ✅ Access controls and audit logs
- ✅ Business Associate Agreement (BAA)
- ✅ Breach notification procedures
- ✅ Minimum necessary principle
FDA Software as Medical Device (SaMD):
- Clinical validation required
- Risk classification
- Quality management system (ISO 13485)
- Post-market surveillance
3.3 Safety Architecture
Section titled “3.3 Safety Architecture”┌─────────────────────────────────────────────────────────┐│ Safety Layer: ││ - Human-in-the-loop (mandatory review) ││ - Confidence thresholds ││ - Contraindication checks ││ - Drug interaction database │└─────────────────────────────────────────────────────────┘ ▲ │┌────────┴────────────────────────────────────────────────┐│ L5: Persona "Clinical Decision Support Agent" ││ - Role: Recommendation (not decision) ││ - Constraints: Evidence-based only ││ - Disclaimers: Not a substitute │├─────────────────────────────────────────────────────────┤│ L4: Reasoning Medical knowledge reasoning ││ - Guidelines: UpToDate, Cochrane ││ - Evidence grading (A/B/C) ││ - Differential diagnosis │├─────────────────────────────────────────────────────────┤│ L3: Capabilities - EHR integration (HL7 FHIR) ││ - Medical literature search ││ - Drug database lookup │└─────────────────────────────────────────────────────────┘3.4 Explainability Requirements
Section titled “3.4 Explainability Requirements”Mandatory Explanations:
- Evidence sources (studies, guidelines)
- Confidence levels
- Reasoning chain
- Limitations and caveats
- Alternative diagnoses considered
Example Output:
Recommendation: Consider prescribing metformin as first-line therapy for Type 2 Diabetes.
Evidence:- ADA Guidelines 2023 (Grade A recommendation)- UKPDS Study (N Engl J Med. 1998;339:229-234)- Cochrane Review (2020): RR 0.87 for cardiovascular outcomes
Confidence: High (92%)
Contraindications to check:- eGFR < 30 mL/min/1.73m² (renal impairment)- Severe hepatic impairment- Lactic acidosis history
Alternative considerations:- GLP-1 agonist if weight loss desired- SGLT2 inhibitor if heart failure present
⚠️ This is a clinical decision support tool. Final treatment decision must be made by licensed healthcare provider based on full clinical context.3.5 Data Privacy
Section titled “3.5 Data Privacy”PHI Protection:
- De-identification per HIPAA Safe Harbor method
- Minimum necessary access
- Audit logs for all PHI access
- Patient consent for data use
- Right to access and amendment
4. Financial Trading Agent
Section titled “4. Financial Trading Agent”4.1 Scenario Overview
Section titled “4.1 Scenario Overview”Domain: Financial services
Conformance Profile: ARAL-CORE (L1-L5)
Key Requirements: Low latency, audit trails, risk management
4.2 Compliance Requirements
Section titled “4.2 Compliance Requirements”Regulations:
- MiFID II (EU Markets in Financial Instruments Directive)
- SEC Rule 15c3-5 (US Market Access Rule)
- ESMA guidelines on algorithmic trading
- FCA Handbook (UK)
Mandatory Controls:
- Pre-trade risk controls
- Kill switch mechanism
- Order throttling
- Market maker obligations
- Best execution requirements
- Transaction reporting (within 1 minute)
4.3 Risk Management Architecture
Section titled “4.3 Risk Management Architecture”┌─────────────────────────────────────────────────────────┐│ Risk Controls (Hardware/Software Circuit Breakers) ││ - Max order size ││ - Max position limits ││ - Loss limits (daily/weekly) ││ - Volatility filters ││ - Fat finger protection │└─────────────────────────────────────────────────────────┘ ▲ │┌────────┴────────────────────────────────────────────────┐│ L5: Persona "Trading Agent" ││ - Strategy: Market making ││ - Risk tolerance: Low ││ - Regulatory: MiFID II compliant │├─────────────────────────────────────────────────────────┤│ L4: Reasoning Reinforcement learning model ││ - Market microstructure analysis ││ - Order book dynamics ││ - Latency: <100μs inference │├─────────────────────────────────────────────────────────┤│ L3: Capabilities - FIX protocol integration ││ - Market data feeds ││ - Order placement/cancellation │├─────────────────────────────────────────────────────────┤│ L2: Memory - Order book state (in-memory) ││ - Historical trades (TimescaleDB) ││ - Strategy parameters (Redis) │├─────────────────────────────────────────────────────────┤│ L1: Runtime Bare metal servers (co-location) ││ - OS: Linux RT kernel ││ - Network: DPDK, RDMA │└─────────────────────────────────────────────────────────┘4.4 Audit Requirements
Section titled “4.4 Audit Requirements”Trade Reconstruction:
- Full audit trail of all decisions
- Model version and parameters
- Market data snapshot at decision time
- Reasoning for each trade
- Retention: 7 years (MiFID II)
Audit Log Example:
{ "event_id": "trade-12345", "timestamp": "2026-01-15T14:30:00.123456Z", "agent_id": "trading-agent-001", "model_version": "v2.3.1", "action": "buy", "instrument": "AAPL", "quantity": 100, "price": 150.25, "reasoning": { "signal_strength": 0.82, "features": { "bid_ask_spread": 0.01, "order_imbalance": 0.65, "volatility": 0.015 }, "risk_checks": { "position_limit": "pass", "daily_loss_limit": "pass", "volatility_filter": "pass" } }, "market_data": { ... }, "result": { "order_id": "ord-67890", "execution_price": 150.26, "slippage": 0.01 }}5. IoT Smart Home Orchestrator
Section titled “5. IoT Smart Home Orchestrator”5.1 Scenario Overview
Section titled “5.1 Scenario Overview”Domain: Smart home automation
Conformance Profile: ARAL-ORCH (L1-L6)
Key Requirements: Low power, local execution, privacy
5.2 Edge Architecture
Section titled “5.2 Edge Architecture”┌───────────────────────────────────────┐│ Cloud Layer (Optional) ││ - Voice assistant integration ││ - Remote access ││ - OTA updates │└─────────────┬─────────────────────────┘ │┌─────────────▼─────────────────────────┐│ Edge Gateway (ARAL Agent) ││ - Raspberry Pi / NVIDIA Jetson ││ - Local inference (TFLite/ONNX) ││ - Matter/Thread protocol support │└─────────────┬─────────────────────────┘ │ ┌─────────┼─────────┬─────────┐ │ │ │ │┌───▼───┐ ┌──▼──┐ ┌──▼──┐ ┌──▼──┐│Lights │ │Locks│ │HVAC │ │Camera│└───────┘ └─────┘ └─────┘ └─────┘5.3 Privacy-First Design
Section titled “5.3 Privacy-First Design”Local Processing:
- Voice commands processed on-device
- Video analysis at edge (no cloud upload)
- Encrypted local storage
- Network-isolated operation mode
Data Minimization:
- No personal data sent to cloud
- Aggregated telemetry only (opt-in)
- Automatic deletion of video after 24h
- Anonymous usage statistics
5.4 Persona Configuration
Section titled “5.4 Persona Configuration”{ "persona": { "id": "smart-home-orchestrator", "name": "Home Automation Agent", "constraints": { "privacy_mode": "maximum", "cloud_access": false, "voice_retention": "none", "video_retention": "24h" }, "capabilities": [ { "id": "control_lights", "protocol": "matter", "devices": ["living_room", "bedroom", "kitchen"] }, { "id": "manage_hvac", "protocol": "zigbee", "learning_enabled": true } ], "reasoning": { "model": "tflite", "inference_location": "edge", "latency_requirement": "<200ms" } }}6. DevOps Autonomous Operations
Section titled “6. DevOps Autonomous Operations”6.1 Scenario Overview
Section titled “6.1 Scenario Overview”Domain: IT operations
Conformance Profile: ARAL-ORCH (L1-L6)
Key Requirements: Reliability, observability, human oversight
6.2 AIOps Architecture
Section titled “6.2 AIOps Architecture”┌─────────────────────────────────────────────────────────┐│ L6: Orchestration Multi-agent coordination ││ - Incident Commander Agent ││ - Diagnostics Agent ││ - Remediation Agent ││ - Communication Agent │├─────────────────────────────────────────────────────────┤│ L4: Reasoning - Anomaly detection (ML) ││ - Root cause analysis (LLM) ││ - Runbook selection ││ - Impact assessment │├─────────────────────────────────────────────────────────┤│ L3: Capabilities - Kubernetes API ││ - Cloud provider APIs ││ - Terraform/Ansible ││ - PagerDuty/Slack │├─────────────────────────────────────────────────────────┤│ L2: Memory - Metrics: Prometheus ││ - Logs: Elasticsearch ││ - Traces: Jaeger ││ - Incidents: PostgreSQL │└─────────────────────────────────────────────────────────┘6.3 Runbook Automation
Section titled “6.3 Runbook Automation”Incident Detection → Analysis → Remediation
Example Flow:
- Detection: High error rate on API service
- Analysis:
- Check recent deployments
- Analyze error logs
- Query metrics (CPU, memory, network)
- Review traces for slow requests
- Diagnosis: New deployment causing memory leak
- Remediation Options:
- Option A: Rollback to previous version (low risk)
- Option B: Scale up pods (temporary mitigation)
- Option C: Apply hotfix (requires testing)
- Decision: Agent recommends rollback
- Human Approval: Required for production changes
- Execution: Automated rollback via CI/CD
- Verification: Monitor metrics for 15 minutes
- Communication: Update Slack channel, close PagerDuty incident
6.4 Safety Guardrails
Section titled “6.4 Safety Guardrails”Change Approval Matrix:
| Action Type | Dev | Staging | Production |
|---|---|---|---|
| Read-only queries | Auto | Auto | Auto |
| Config changes | Auto | Auto | Approval |
| Scaling (within limits) | Auto | Auto | Auto |
| Deployments | Auto | Approval | Approval |
| Database changes | Approval | Approval | Manual |
| Service restarts | Auto | Auto | Approval |
Blast Radius Limits:
- Max 20% of fleet at once
- Canary deployments first
- Automatic rollback on error spike
- Rate limiting on API calls
7. Legal Document Analysis
Section titled “7. Legal Document Analysis”7.1 Scenario Overview
Section titled “7.1 Scenario Overview”Domain: Legal tech
Conformance Profile: ARAL-CORE (L1-L5)
Key Requirements: Accuracy, confidentiality, explainability
7.2 Use Cases
Section titled “7.2 Use Cases”- Contract review and risk analysis
- Legal research and case law search
- Due diligence document processing
- Regulatory compliance checking
- E-discovery and document classification
7.3 Security Architecture
Section titled “7.3 Security Architecture”Confidentiality Controls:
- Attorney-client privilege protection
- End-to-end encryption
- Zero-knowledge architecture
- No training on client data
- Isolated tenant environments
Access Controls:
- Multi-factor authentication
- Client matter codes
- Need-to-know access
- Time-limited document access
- Watermarking and DRM
7.4 Contract Analysis Workflow
Section titled “7.4 Contract Analysis Workflow”Risk Categories:
- 🔴 High: Unlimited liability, broad indemnification
- 🟡 Medium: Unfavorable payment terms, restrictive IP clauses
- 🟢 Low: Standard confidentiality, typical termination clauses
7.5 Explainability
Section titled “7.5 Explainability”Clause-Level Annotations:
Clause: "Vendor shall indemnify Client for any and all claims..."
⚠️ RISK: HighISSUE: Unlimited indemnification obligationPRECEDENT: Similar clause upheld in Smith v. Acme Corp (2023)RECOMMENDATION: Negotiate cap at 2x contract valueALTERNATIVE LANGUAGE: "...up to a maximum of two times the total contract value..."8. Educational Tutoring System
Section titled “8. Educational Tutoring System”8.1 Scenario Overview
Section titled “8.1 Scenario Overview”Domain: Education technology
Conformance Profile: ARAL-CORE (L1-L5)
Key Requirements: Personalization, safety, COPPA compliance
8.2 Student Protection
Section titled “8.2 Student Protection”COPPA Compliance (Children’s Online Privacy Protection Act):
- Parental consent for users under 13
- No behavioral advertising
- Data minimization
- Right to delete child’s data
- Clear privacy notice
Content Safety:
- Content filtering (profanity, violence)
- Age-appropriate materials
- Moderation of generated content
- Anti-cheating measures
- Cyberbullying detection
8.3 Adaptive Learning Architecture
Section titled “8.3 Adaptive Learning Architecture”┌─────────────────────────────────────────────────────────┐│ L5: Persona "Math Tutor Agent" ││ - Subject: Algebra ││ - Grade level: 8th ││ - Teaching style: Socratic │├─────────────────────────────────────────────────────────┤│ L4: Reasoning - Learning science principles ││ - Zone of proximal development ││ - Spaced repetition ││ - Retrieval practice │├─────────────────────────────────────────────────────────┤│ L3: Capabilities - Problem generation ││ - Step-by-step hints ││ - Mistake analysis ││ - Progress tracking │├─────────────────────────────────────────────────────────┤│ L2: Memory Student Model: ││ - Mastery levels per topic ││ - Common mistakes ││ - Learning pace ││ - Engagement patterns │└─────────────────────────────────────────────────────────┘8.4 Personalization
Section titled “8.4 Personalization”Student Model Attributes:
- Current knowledge state (Bayesian Knowledge Tracing)
- Learning preferences (visual/verbal/kinesthetic)
- Optimal difficulty level
- Session duration preferences
- Time of day patterns
Adaptive Strategies:
- Increase difficulty when mastery demonstrated
- Provide scaffolding for struggling concepts
- Interleave topics for better retention
- Adjust pace based on engagement signals
9. Supply Chain Optimization
Section titled “9. Supply Chain Optimization”9.1 Scenario Overview
Section titled “9.1 Scenario Overview”Domain: Logistics and supply chain
Conformance Profile: ARAL-ORCH (L1-L6)
Key Requirements: Multi-party coordination, real-time optimization
9.2 Multi-Organization Architecture
Section titled “9.2 Multi-Organization Architecture”┌────────────────┐ ┌────────────────┐ ┌────────────────┐│ Manufacturer │ │ Distributor │ │ Retailer ││ Agent │◄───►│ Agent │◄───►│ Agent │└────────┬───────┘ └────────┬───────┘ └────────┬───────┘ │ │ │ └──────────────────────┼──────────────────────┘ │ ┌───────────▼───────────┐ │ Coordination Agent │ │ (Neutral Third Party)│ └───────────────────────┘9.3 Coordination Protocol
Section titled “9.3 Coordination Protocol”Shared Information (via L7 Protocol):
- Inventory levels (aggregated)
- Demand forecasts
- Capacity constraints
- Lead times
- Pricing (where permitted)
Private Information (not shared):
- Supplier relationships
- Cost structures
- Strategic plans
- Customer lists
9.4 Optimization Objectives
Section titled “9.4 Optimization Objectives”Multi-Objective Optimization:
- Minimize total cost
- Maximize service level (fill rate)
- Minimize carbon footprint
- Balance inventory across network
- Reduce stockouts and overstocks
Example Decision:
Scenario: Increased demand for Product X in Region A
Manufacturer Agent:- Increase production by 20%- Allocate extra capacity
Distributor Agent:- Reroute shipments from low-demand Region B- Expedite delivery to Region A
Retailer Agent:- Accept higher shipment frequency- Optimize shelf space
Coordination Agent:- Validates no conflicts- Optimizes truck routes- Minimizes total network cost10. Cross-Organization Agent Collaboration
Section titled “10. Cross-Organization Agent Collaboration”10.1 Scenario Overview
Section titled “10.1 Scenario Overview”Domain: Inter-enterprise collaboration
Conformance Profile: ARAL-INTEROP (L1-L7)
Key Requirements: Standardized protocols, trust, federation
10.2 Federation Architecture
Section titled “10.2 Federation Architecture”┌─────────────────────────────────────────────────────────┐│ Agent Directory ││ (Decentralized Registry) ││ - Agent discovery ││ - Capability advertisement ││ - Trust anchors │└────────────────┬────────────────────────────────────────┘ │ ┌───────────┼───────────┬───────────┐ │ │ │ │┌────▼────┐ ┌───▼────┐ ┌────▼────┐ ┌───▼────┐│ Org A │ │ Org B │ │ Org C │ │ Org D ││ Agent │ │ Agent │ │ Agent │ │ Agent │└─────────┘ └────────┘ └─────────┘ └────────┘10.3 Trust Model
Section titled “10.3 Trust Model”Identity & Authentication:
- X.509 certificates (PKI)
- Mutual TLS (mTLS)
- DID (Decentralized Identifiers)
- OAuth 2.0 for delegation
Authorization:
- Capability-based access control
- Signed capability tokens
- Time-limited permissions
- Audit trail requirements
10.4 Interoperability Protocol (L7)
Section titled “10.4 Interoperability Protocol (L7)”Agent-to-Agent Protocol:
{ "protocol": "aral-a2a", "version": "1.0", "message": { "id": "msg-abc123", "from": { "agent_id": "org-a-agent-001", "organization": "company-a.com", "certificate": "-----BEGIN CERTIFICATE-----..." }, "to": { "agent_id": "org-b-agent-005", "organization": "company-b.com" }, "timestamp": "2026-01-15T14:30:00Z", "ttl": 3600, "type": "request", "action": "query_inventory", "payload": { "product_id": "SKU-12345", "quantity": 1000, "delivery_date": "2026-02-01" }, "signature": "-----BEGIN SIGNATURE-----..." }}10.5 Use Case: Healthcare Information Exchange
Section titled “10.5 Use Case: Healthcare Information Exchange”Scenario: Patient transfers between hospitals
Agents Involved:
- Hospital A: Discharge planning agent
- Hospital B: Admission coordination agent
- Payer: Authorization agent
- Patient: Personal health agent (PHR)
Workflow:
- Hospital A agent initiates transfer request
- Patient agent verifies consent
- Hospital B agent checks bed availability
- Payer agent pre-authorizes admission
- Secure health record transfer (HL7 FHIR)
- Medication reconciliation agent prevents conflicts
- Audit trail recorded by all parties
Benefits:
- Reduced delays (48h → 4h average)
- Fewer medical errors
- Better patient experience
- Automated compliance documentation
Conclusion
Section titled “Conclusion”These integration scenarios demonstrate the versatility and power of ARAL-conformant agents across diverse domains. Key success factors include:
- Clear Architecture: Layer separation enables modularity
- Security First: Built-in security controls at each layer
- Privacy by Design: GDPR compliance from the start
- Interoperability: Standard protocols enable collaboration
- Human Oversight: Critical decisions require human approval
- Auditability: Full traceability for compliance and debugging
Organizations implementing ARAL agents should:
- Start with a clear conformance profile (CORE, ORCH, or INTEROP)
- Conduct thorough security and privacy assessments
- Implement comprehensive monitoring and observability
- Plan for human-in-the-loop workflows
- Establish clear governance and accountability
11. End-to-End Integration Scenarios
Section titled “11. End-to-End Integration Scenarios”11.1 Customer Support Automation
Section titled “11.1 Customer Support Automation”Domain: Enterprise customer service
Conformance Profile: ARAL-INTEROP (L1-L7)
Technology Stack: Modern cloud-native architecture
┌─────────────────────────────────────────────────────────────────┐│ CUSTOMER SUPPORT AGENT │├─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬────┤│ L7 │ L6 │ L5 │ L4 │ L3 │ L2 │ L1 │├─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼────┤│ Cloud │Temporal │Keycloak │LangChain│ Zendesk │ Redis + │ K8s││ Events │ │ + OPA │ + DMN │ API │ Qdrant │ │└─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴────┘Layer Implementations:
- L7 (Protocol): CloudEvents for event-driven architecture, async messaging
- L6 (Orchestration): Temporal for workflow orchestration, durable execution
- L5 (Persona): Keycloak for identity, OPA (Open Policy Agent) for authorization
- L4 (Reasoning): LangChain for LLM orchestration, DMN (Decision Model Notation)
- L3 (Capabilities): Zendesk API integration for ticket management
- L2 (Memory): Redis for caching, Qdrant for vector similarity search
- L1 (Runtime): Kubernetes cluster for container orchestration
Key Features:
- Multi-tenant architecture with isolated namespaces
- Real-time sentiment analysis and escalation
- Automated ticket routing and triage
- Context-aware conversation history
- SLA-driven prioritization
11.2 Financial Document Processing
Section titled “11.2 Financial Document Processing”Domain: Banking and financial services
Conformance Profile: ARAL-ORCH (L1-L6)
Technology Stack: AWS-native with compliance focus
┌─────────────────────────────────────────────────────────────────┐│ DOCUMENT PROCESSING PIPELINE │├─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬────┤│ L7 │ L6 │ L5 │ L4 │ L3 │ L2 │ L1 │├─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼────┤│ AsyncAPI│ Argo │ SPIFFE │ GPT-4 │ AWS │Postgres │EKS ││ + Kafka │Workflows│ + Cedar │+ Drools │Textract │+ S3 │ │└─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴────┘Layer Implementations:
- L7 (Protocol): AsyncAPI for event schemas, Kafka for message streaming
- L6 (Orchestration): Argo Workflows for Kubernetes-native pipelines
- L5 (Persona): SPIFFE/SPIRE for service identity, Cedar for policy language
- L4 (Reasoning): GPT-4 for document understanding, Drools for business rules
- L3 (Capabilities): AWS Textract for OCR and document extraction
- L2 (Memory): PostgreSQL for structured data, S3 for document storage
- L1 (Runtime): Amazon EKS (Elastic Kubernetes Service)
Key Features:
- PII detection and redaction
- Regulatory compliance checks (KYC, AML)
- Multi-language document support
- Audit trail for all processing steps
- SOC 2 Type II compliant architecture
11.3 Multi-Agent Research System
Section titled “11.3 Multi-Agent Research System”Domain: Academic research and knowledge synthesis
Conformance Profile: ARAL-INTEROP (L1-L7)
Technology Stack: Advanced AI agent collaboration
┌─────────────────────────────────────────────────────────────────┐│ RESEARCH AGENT COLLECTIVE │├─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬────┤│ L7 │ L6 │ L5 │ L4 │ L3 │ L2 │ L1 │├─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼────┤│ gRPC │ CrewAI │ Auth0 │LangGraph│ MCP │ Neo4j + │GKE ││+ Events │+ Tempora│ + OPA │+ Claude │ Servers │ Weaviate│ │└─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴────┘Layer Implementations:
- L7 (Protocol): gRPC for efficient RPC, CloudEvents for async communication
- L6 (Orchestration): CrewAI for multi-agent coordination, Temporal for workflows
- L5 (Persona): Auth0 for authentication, OPA for fine-grained authorization
- L4 (Reasoning): LangGraph for agent state machines, Claude for deep analysis
- L3 (Capabilities): MCP (Model Context Protocol) servers for tool integration
- L2 (Memory): Neo4j for knowledge graphs, Weaviate for semantic search
- L1 (Runtime): Google Kubernetes Engine (GKE)
Agent Roles:
- Literature Review Agent: Searches academic databases, extracts key findings
- Synthesis Agent: Combines insights, identifies patterns and gaps
- Critique Agent: Evaluates methodology, identifies biases
- Citation Agent: Manages references, formats bibliographies
- Writing Agent: Generates research summaries and reports
Coordination Modes:
- Debate Mode: Agents argue different interpretations of findings
- Consensus Mode: Voting on confidence levels for claims
- Chain Mode: Sequential analysis pipeline (search → analyze → critique → write)
- Parallel Mode: Concurrent literature searches across databases
12. Conformance Matrix by Layer
Section titled “12. Conformance Matrix by Layer”This matrix defines the conformance requirements for each layer across the three ARAL profiles.
L1-L3: Runtime, Memory & Capabilities
Section titled “L1-L3: Runtime, Memory & Capabilities”| Layer | MUST (Obligatoire) | SHOULD (Recommandé) | MAY (Optionnel) |
|---|---|---|---|
| L1: Runtime | • Container isolation • Resource limits • Health checks • Graceful shutdown | • Metrics endpoint • Hot reload • Backpressure | • GPU acceleration • Custom schedulers • Multi-region |
| L2: Memory | • Durable state store • TTL-based expiration • Namespace isolation | • Event sourcing • CQRS pattern • Encryption at rest | • Vector memory • Distributed cache • Time-travel debugging |
| L3: Capabilities | • OpenAPI contract • Permission checks • Input validation | • Service discovery • Circuit breaker • Rate limiting | • MCP support • Plugin system • Capability marketplace |
L4-L5: Reasoning & Persona
Section titled “L4-L5: Reasoning & Persona”| Layer | MUST (Obligatoire) | SHOULD (Recommandé) | MAY (Optionnel) |
|---|---|---|---|
| L4: Reasoning | • Traceable decisions • Timeout enforcement • Error handling | • Guardrails • Prompt injection defense • Token limits | • Hybrid reasoning • Model ensemble • Reinforcement learning |
| L5: Persona | • Agent identity • Immutable at runtime • Validation at startup | • Policy-as-code • Cryptographic signing • Constraint enforcement | • Verifiable credentials • DID support • Persona marketplace |
L6-L7: Orchestration & Protocol
Section titled “L6-L7: Orchestration & Protocol”| Layer | MUST (Obligatoire) | SHOULD (Recommandé) | MAY (Optionnel) |
|---|---|---|---|
| L6: Orchestration | • Retry policies • Load balancing • Circuit breaker | • Saga support • Graceful degradation • Priority queues | • Multi-agent choreography • Agent discovery • Consensus protocols |
| L7: Protocol | • CloudEvents envelope • Trace propagation • Standard auth | • Schema versioning • Content negotiation • Compression | • Federation protocol • P2P communication • Blockchain integration |
12.1 Profile Requirements
Section titled “12.1 Profile Requirements”ARAL-CORE (L1-L5)
Section titled “ARAL-CORE (L1-L5)”Target: Standalone autonomous agents
Required Layers: L1, L2, L3, L4, L5
Optional Layers: None
Compliance Level: All MUST requirements for L1-L5
Use Cases:
- Personal AI assistants
- Single-purpose automation
- Edge computing agents
- Embedded systems
ARAL-ORCH (L1-L6)
Section titled “ARAL-ORCH (L1-L6)”Target: Multi-agent orchestration
Required Layers: L1, L2, L3, L4, L5, L6
Optional Layers: L7 (for enhanced interop)
Compliance Level: All MUST requirements for L1-L6
Use Cases:
- Enterprise multi-agent systems
- Swarm intelligence
- Distributed problem solving
- Collaborative agents
ARAL-INTEROP (L1-L7)
Section titled “ARAL-INTEROP (L1-L7)”Target: Cross-system interoperability
Required Layers: L1, L2, L3, L4, L5, L6, L7
Optional Layers: None
Compliance Level: All MUST requirements for L1-L7
Use Cases:
- Inter-enterprise collaboration
- Federated agent networks
- Industry consortiums
- Public agent services
12.2 Implementation Checklists
Section titled “12.2 Implementation Checklists”For L1 (Runtime) - MUST
Section titled “For L1 (Runtime) - MUST”- Unique agent instance ID
- Graceful shutdown (configurable timeout)
- Health check endpoint (HTTP/gRPC)
- Resource quotas (CPU, memory, connections)
- Lifecycle event logging
- Request timeout enforcement
- Metrics endpoint (Prometheus format)
For L2 (Memory) - MUST
Section titled “For L2 (Memory) - MUST”- Working memory (in-process or Redis)
- TTL-based expiration
- Atomic read-modify-write
- Namespace isolation
- Clear/delete operations
- Memory stats endpoint
For L3 (Capabilities) - MUST
Section titled “For L3 (Capabilities) - MUST”- Capability registry
- Permission-based access control
- Input/output validation (JSON Schema)
- Capability not found error handling
- Execution timeout enforcement
- Result validation
For L4 (Reasoning) - MUST
Section titled “For L4 (Reasoning) - MUST”- LLM provider abstraction
- Token counting and limits
- Prompt construction
- Response parsing
- Error handling (rate limits, timeouts)
- Decision audit logging
For L5 (Persona) - MUST
Section titled “For L5 (Persona) - MUST”- Persona definition (JSON)
- Validation at startup
- Immutability at runtime (hot-swap requires restart)
- Constraint checking
- Persona ID in all logs
- Version compatibility check
For L6 (Orchestration) - MUST
Section titled “For L6 (Orchestration) - MUST”- Agent routing
- Persona constraint enforcement
- Circuit breaker pattern
- Graceful failure handling
- Routing decision logging
- Request timeout
- Trace context propagation
For L7 (Protocol) - MUST
Section titled “For L7 (Protocol) - MUST”- Envelope format (CloudEvents or ARAL standard)
- trace_id propagation
- Timestamp validation
- Authentication (OAuth 2.0, mTLS)
- Rate limiting
- TTL enforcement
- Protocol version negotiation
13. Technology Stack Examples
Section titled “13. Technology Stack Examples”13.1 Cloud-Native Stack (AWS)
Section titled “13.1 Cloud-Native Stack (AWS)”| Layer | Technology | Notes |
|---|---|---|
| L7 | API Gateway + EventBridge | REST + async events |
| L6 | Step Functions | Workflow orchestration |
| L5 | IAM + Cognito | Identity & access |
| L4 | Bedrock (Claude/Titan) | Managed LLM service |
| L3 | Lambda + API Gateway | Serverless capabilities |
| L2 | DynamoDB + ElastiCache | NoSQL + caching |
| L1 | ECS Fargate / EKS | Container runtime |
Cost Model: Pay-per-use, serverless-first
13.2 Enterprise On-Premises Stack
Section titled “13.2 Enterprise On-Premises Stack”| Layer | Technology | Notes |
|---|---|---|
| L7 | Kong API Gateway | Enterprise API management |
| L6 | Apache Airflow | Workflow orchestration |
| L5 | Keycloak + OPA | Open source IAM |
| L4 | Ollama (local LLM) | On-prem model serving |
| L3 | Custom Python services | Business logic |
| L2 | PostgreSQL + Redis | RDBMS + cache |
| L1 | Kubernetes (on-prem) | Container orchestration |
Cost Model: Fixed infrastructure costs, full control
13.3 Edge Computing Stack (IoT)
Section titled “13.3 Edge Computing Stack (IoT)”| Layer | Technology | Notes |
|---|---|---|
| L7 | MQTT + CoAP | Lightweight protocols |
| L6 | EdgeX Foundry | IoT edge framework |
| L5 | Lightweight JWT | Token-based auth |
| L4 | TensorFlow Lite | On-device inference |
| L3 | gRPC services | Efficient RPC |
| L2 | SQLite + LevelDB | Embedded database |
| L1 | Docker (ARM) | Containerized edge |
Cost Model: Resource-constrained, offline-capable
Conclusion
Section titled “Conclusion”These end-to-end scenarios demonstrate ARAL’s flexibility across diverse domains, scales, and technology stacks. The conformance matrix provides clear guidance on implementation requirements, ensuring interoperability while allowing technology choice flexibility.
Key Takeaways:
- Layered Architecture: Each layer has distinct responsibilities and can be implemented independently
- Technology Agnostic: ARAL defines interfaces, not implementations
- Scalability: From edge devices to enterprise multi-agent systems
- Compliance: Built-in support for regulatory requirements (GDPR, HIPAA, etc.)
- Interoperability: Standard protocols enable cross-organization collaboration
References:
- ARAL-CORE-1.0
- ARAL-SECURITY-1.0
- ARAL-PRIVACY-1.0
- ARAL-PROTOCOL-1.0
- ARAL-CONFORMANCE-1.0
License: CC-BY-4.0
Copyright: © 2026 ARAL Standard Contributors